857 resultados para Benthic Infauna
Resumo:
Composite stacks were constructed by superimposing 6 to 13 benthic foraminiferal d18O records covering the period 0-850 ka. An initial timescale for each core was established using radioisotopic age control points and assuming constant sedimentation rates between these points. The average of these records is our 13-core "untuned" stack. Next, we matched the 41 kyr component of each record individually to variations in Earth's obliquity. Four of the 13 records produced timescales that were inconsistent with one or more of the known radioisotopic ages. The nine remaining cores were averaged to create a "minimally tuned" stack. Six of the minimally tuned cores were assembled into a "tropical" stack. For each stack we estimated the uncertainty envelope from the standard deviation of the constituents. Spectral analysis of the three stacks indicates that benthic d18O is dominated by a 100 kyr oscillation that has a narrow spectral peak. The contribution of precession to the total variance is small when compared to prior results from planktic stacks.
Resumo:
The book is devoted to stratigraphy of Cretaceous deposits from high latitudes of the southern hemisphere (subantarctic part of the ocean), as well as to geological and climatic Cretaceous history of the area. Correlation with Cretaceous sediments from warm water regions is carried out. Description and photos of characteristic species of planktonic and benthic foraminifera and calcispherulides are given.
Resumo:
In this study isopod species of the Ross Sea were investigated. Literature until May 2008 was checked to provide an overview of all known and described species in the Ross Sea. This species checklist was then enlarged through material of the 19th Italica expedition in 2004. During this expedition for the first time a small mesh net (500 µm) was used. Nine thousand four hundred and eighty one isopod specimens were collected during this expedition. Through this material the number of isopod species in the Ross Sea increased from 42 to 117 species, which belong to 20 families and 49 genera. Fifty-six percentage of the isopods species collected during the Italica expedition are new to science. The zoogeography of the 117 species was investigated. A non-transformed binary presence-absence data matrix was constructed using the Bray-Curtis coefficient. The results were displayed in a cluster analysis and by nonmetric multidimensional scaling (MDS). This paper gives a first insight into the occurrence and distribution of the isopod species of the Ross Sea.
Resumo:
Benthic foraminiferal assemblages from Santa Barbara Basin exhibit major faunal and ecological switches associated with late Quaternary millennial- to decadal-scale global climate oscillations. Repeated turnovers of entire faunas occurred rapidly (<40-400 yr) without extinction or speciation in conjunction with Dansgaard-Oeschger shifts in thermohaline circulation, ventilation, and climate, confirming evolutionary model predictions of Roy et al. Consistent faunal successions of dysoxic taxa during successive interstadials reflect the extreme sensitivity and adaptation of the benthic ecosystem to the rapid environmental changes that marked the late Quaternary and possibly other transitional intervals in the history of the Earth's ocean-atmosphere-cryosphere system. These data support the hypothesis that broad segments of the biosphere are well adapted to rapid climate change.
Resumo:
Pleistocene stable carbon isotope (d13C) records from surface and deep dwelling foraminifera in all major ocean basins show two distinct long-term carbon isotope fluctuations since 1.00 Ma. The first started around 1.00 Ma and was characterised by a 0.35 per mil decrease in d13C values until 0.90 Ma, followed by an increase of 0.60 per mil lasting until 0.50 Ma. The subsequent fluctuation started with a 0.40 per mil decrease between 0.50 and 0.25 Ma, followed by an increase of 0.30 per mil between 0.25 and 0.10 Ma. Here, we evaluate existing evidence and various hypotheses for these global Pleistocene d13C fluctuations and present an interpretation, where the fluctuations most likely resulted from concomitant changes in the burial fluxes of organic and inorganic carbon due to ventilation changes and/or changes in the production and export ratio. Our model indicates that to satisfy the long-term 'stability' of the Pleistocene lysocline, the ratio between the amounts of change in the organic and inorganic carbon burial fluxes would have to be close to a 1:1 ratio, as deviations from this ratio would lead to sizable variations in the depth of the lysocline. It is then apparent that the mid-Pleistocene climate transition, which, apart from the glacial cycles, represents the most fundamental change in the Pleistocene climate, was likely not associated with a fundamental change in atmospheric pCO2. While recognising that high frequency glacial/interglacial cycles are associated with relatively large (100 ppmv) changes in pCO2, our model scenario (with burial changes close to a 1:1 ratio) produces a maximum long-term variability of only 20 ppmv over the fluctuation between 1.00 and 0.50 Ma.
Resumo:
A rapid increase in greenhouse gas levels is thought to have fueled global warming at the Paleocene-Eocene Thermal Maximum (PETM). Foraminiferal magnesium/calcium ratios indicate that bottom waters warmed by 4° to 5°C, similar to tropical and subtropical surface ocean waters, implying no amplification of warming in high-latitude regions of deep-water formation under ice-free conditions. Intermediate waters warmed before the carbon isotope excursion, in association with downwelling in the North Pacific and reduced Southern Ocean convection, supporting changing circulation as the trigger for methane hydrate release. A switch to deep convection in the North Pacific at the PETM onset could have amplified and sustained warming.