930 resultados para Barium calcium titanate
Resumo:
Cretaceous basalts recovered during Ocean Drilling Program Leg 183 at Site 1137 on the Kerguelen Plateau show remarkable geochemical similarities to Cretaceous continental tholeiites located on the continental margins of eastern India (Rajmahal Traps) and southwestern Australia (Bunbury basalt). Major and trace element and Sr-Nd-Pb isotopic compositions of the Site 1137 basalts are consistent with assimilation of Gondwanan continental crust (from 5 to 7%) by Kerguelen plume-derived magmas. In light of the requirement for crustal contamination of the Kerguelen Plateau basalts, we re-examine the early tectonic environment of the initial Kerguelen plume head. Although a causal role of the Kerguelen plume in the breakup of Eastern Gondwana cannot be ascertained, we demonstrate the need for the presence of the Kerguelen plume early during continental rifting. Activity resulting from interactions by the newly formed Indian and Australian continental margins and the Kerguelen plume may have resulted in stranded fragments of continental crust, isolated at shallow levels in the Indian Ocean lithosphere.
Resumo:
Magmatic rocks of the Shatsky Rise form two groups replacing one another in time. The earlier ferrotholeiites enriched in potassium compose large massifs. Trachybasalts form seamounts and neotectonic ridges. Composition of volcanites indicates that two sources of magmatism took part in their formation: a depleted source characteristic of basalts of mid-ocean ridges and a ''plume'' source participating in formation of oceanic plateaus.
Resumo:
In western Neuschwabenland basic dikes occur in the Jurassic lavas and Permian sediments of Vestfjella as weil as in the Precambrian sedimentary-volcanogenic rock sequence of the Ahlmannryggen and in the Precambrian crystalline complexes of Heimefrontfjella and Mannefallknausane. The concentration of the dikes in Vestfjella is conspicuous. Two main directions of strike perpendicular to each other are recognizable, from which the NE-SW striking one is predominant. The direction of the dikes coincides with the Mesozoic and younger fracture tectonics. Age relationships by structural, petrographical and geochemical observations are confirmed by palaeomagnetic and radiometrie age determinations from PETERS et al. (1986). Considerations on the geochemistry of further dolerite occurrences from Antarctica and other regions of the Gondwana continent are pointed out. Finally comparisons with the analogous South African dike system show the geotectonic significance of the dolerite dikes for the break-up of Gondwana.
Resumo:
We combined longitudinal analyses of otolith microstructure and trace elemental composition in ~ age 1-2 Pacific bluefin tuna (PBT, n = 24) for inferring the arrival of individuals in the California Current Large Marine Ecosystem (CCLME). Element:Ca ratios in transverse otolith sections (9-12 rows, triplicate ablations from coreprimordium to edge, ø50 µm) were quantified for eight elements: Li, Mg, Mn, Co, Cu, Zn, Sr, and Ba, which was followed by microstructure analysis to provide age estimates corresponding to each ablation spot. Age estimates from otoliths ranged from 328 to 498 days post hatch. The combined elemental signatures of four elements (Ba, Mg, Co, Cu) showed a significant increase at the otolith edge in approximately half of the individuals (30-60 days prior to catch). Given the different oceanographic properties of oligotrophic open Pacific vs. high nutrient, upwelling CCLME waters, this signal is consistent with the entry of the fish into the CCLME, which was estimated to occur primarily in July after a transoceanic migration of ~1.5-2.0 months.
Resumo:
Middle Miocene to Holocene fine-grained argillaceous sediments (clays, claystones/muds, and mudstones), which volumetrically dominated the sediment recovery in the Woodlark Basin during Leg 180, were chemically analyzed for major elements, trace elements, and some rare earth elements by X-ray fluorescence. Selected samples also underwent X-ray diffraction (XRD) analysis for mineral determination. The results shed light on sediment provenance when combined with shipboard sediment descriptions, smear slide study, and XRD. The oldest sediments recovered (Site 1108) of middle-late Miocene age include volcanogenic muds with distinctive high MgO and K2O, indicative of a relatively basic calc-alkaline source related to an inferred Miocene forearc succession. The forearc basement, composed of diabase and basalt, was locally exposed (Site 1109) and eroded in the late Miocene (<5.4-9.93 Ma), giving rise to fluvial conglomerates (Sites 1109, 1115, and 1118). Chemically distinctive fine-grained claystones and siltstones (with relatively high Ti, low K) are compatible with derivation from tropically weathered basic igneous rocks, correlated with the Paleogene Papuan ophiolite. Overlying latest Miocene-Pleistocene fine-grained sediments throughout the Woodlark Basin were partly derived from calc-alkaline volcanic sources. However, relatively high abundances of Al2O3 and related element oxides (K2O and Na2O) and trace elements (e.g., Rb and Y) reflect an additional terrigenous input throughout the basin, correlated with pelitic metamorphic rocks exposed on Papua New Guinea and adjacent areas. In addition, sporadic high abundances of Cr and Ni, some other trace metals, and related minerals (talc, crysotile, and chlorite) reflect input from an ophiolitic terrain dominated by ultramafic rocks, correlated with the Paleogene Papuan ophiolite. The source areas possibly included serpentinized ultramafic ophiolitic rocks exposed in the Papua New Guinea interior highlands. Chemical evidence further indicates that fine-grained terrigenous sediment reached the Woodlark Basin throughout its entire late Miocene-Holocene history. Distinctive high-K volcanogenic muds rich in tephra and volcanic ash layers that appear at <2.3 Ma (Sites 1109 and 1115) are indicative of high-K calc-alkaline volcanic centers, possibly located in the Dawson Strait, Moresby Strait, or Dobu Seamount area. Chemical diagenesis of fine-grained sediments within the Woodlark Basin is reflected in clay neomorphism and localized formation of minerals including dolomite, ankerite, and zeolite but has had little effect on the bulk chemical composition of most samples.
Resumo:
The Leg 173 Site 1067 and 1068 amphibolites and metagabbros from the west Iberia margin exhibit variable whole-rock compositions from primitive to more evolved (Mg numbers = 49-71) that are generally incompatible trace and rare earth element enriched (light rare earth element [LREE] = 11-89 x chondrite). The Site 1067 amphibolites are compositionally similar to the basalts reported at Site 899 from this same region, based on trace and rare earth element contents. The Site 1068 amphibolites and metagabbros are similar to the Site 899 diabases but are more LREE enriched. However, the Sites 1067 and 1068 amphibolites and metagabbros are not compositionally similar to the Site 900 metagabbros, which are from the same structural high as the Leg 173 samples. The Leg 173 protoliths may be represented by basalts, diabases, and/or fine-grained gabbros that formed from incompatible trace element-enriched liquids.
Resumo:
Rising anthropogenic CO2 in the surface ocean has raised serious concerns for the ability of calcifying organisms to secrete their shells and skeletons. Previous mollusc carbonate perturbation experiments report deleterious effects at lowered pH (7.8-7.4 pH units), including reduced shell length and thickness and deformed shell morphology. It is not clear whether the reduced shell growth results from a decrease in calcification rate due to lowered aragonite saturation or from an indirect effect on mollusc metabolism. We take a novel approach to discerning between these two processes by examining the impact of lowered pH on the 'vital-effect' associated with element ratios. Reported herein are the first element ratio (Sr/Ca, Ba/Ca, B/Ca, Mg/Ca and Mn/Ca) profiles throughout the larval life stage of Mytilus edulis. Element ratio data for individuals reared in ambient conditions provide new insights into biomineralization during larval development. Sr/Ca ratios are consistent with Sr incorporation in the mineral phase. Mg and Mn are likely hosted in an organic phase. The Ba partition coefficient of early larval shells is one of the highest reported in biogenic aragonite. The reason for the high Ba concentrations is unknown, but may reflect the assimilation of Ba from food and/or Ba concentration in an organic or amorphous carbonate phase. There is no observable difference in the way the studied elements are incorporated into the shells of individuals reared in ambient and lowered pH conditions. The reduced growth rate at lower pH may be a consequence of a disruption to the larval mollusc metabolism.