235 resultados para ultra-fine grained microstructure
Resumo:
The lamination and burrowing patterns in 17 box cores were analyzed with the aid of X-ray photographs and thin sections. A standardized method of log plotting made statistical analysis of the data possible. Several 'structure types' were established, although it was realized that the boundaries are purely arbitrary divisions in what can sometimes be a continuous sequence. In the transition zone between marginal sand facies and fine-grained basin facies, muddy sediment is found which contains particularly well differentiated, alternating laminae. This zone is also characterized by layers rich in plant remains. The alternation of laminae shows a high degree of statistical scattering. Even though a small degree of cyclic periodicity could be defined, it was impossible to correlate individual layers from core to core across the bay. However, through a statistical handling of the plots, zones could be separated on the basis of the number of sand layers they contained. These more or minder sandy zones clarified the bottom reflections seen in the records of the echograph from the area. The manner of facies change across the bay, suggests that no strong bottom currents are effective in the Eckernförde Bay. The marked asymmetry between the north and south flanks of the profile can be attributed to the stronger action of waves on the more exposed areas. Grain size analyses were made from the more homogeneous units found in a core from the transition-facies zone. The results indicate that the most pronounced differences between layers appear in the silt range, and although the differences are slight, they are statistically significant. Layers rich in plant remains were wet-sieved in order to separate the plant detritus. This was than analyzed in a sediment settling balance and found to be hydrodynamically equivalent to a well-sorted, finegrained sand. A special, rhythmic cross-bedding type with dimensions in the millimeter range, has been named 'Crypto-cross-lamination' and is thought to represent rapid sedimentation in an area where only very weak bottom currents are present. It is found only in the deepest part of the basin. Relatively large sand grains, scattered within layers of clayey-silty matrix, seem to be transported by flotation. Thin section examination showed that the inner part of Eckernförder Bay carbonate grains (e. g. Foraminifera shells) were preserved throughout the cores, while in the outer part of the bay they were not present. Well defined tracks and burrows are relatively rare in all of the facies in comparision to the generally strongly developed deformation burrowing. The application of special measures for the deformation burrowing allowed to plot their intensity in profile for each core. A degree of regularity could be found in these burrowing intensity plots, with higher values appearing in the sandy facies, but with no clear differences between sand and silt layers in the transition facies. Small sections in the profiles of the deepest part of the bay show no bioturbation at all.
Resumo:
During the African Humid Period (AHP), much of the modern hyperarid Saharan desert was vegetated and covered with numerous lakes. In marine sediments off northwestern Africa, the AHP is represented by markedly reduced siliciclastic sediment flux between ~ 12.3 and 5.5 ka. Changes in the origin of this terrigenous sediment fraction can be constrained by sediment chemistry and radiogenic isotope tracers. At Ocean Drilling Program (ODP) Site 658, Hole C (20°44.95'N, 18°34.85'W, 2263 mbsl), the neodymium (Nd) isotope composition of terrigenous detritus shows little variability throughout the last 25 kyr, indicating that the contributing geological terranes have not changed appreciably since the last glacial period. In contrast, there were large and abrupt changes in strontium (Sr) isotope ratios and chemical compositions associated with the AHP, during which 87Sr/86Sr ratios were markedly less radiogenic, and sediments show higher chemical indices of alteration. We show that sediment geochemical changes during the AHP cannot be attributed to changes in the source terranes, physical sorting, or intensity of chemical weathering. The low 87Sr/86Sr and high Sr concentrations of AHP-age samples also conflict with the interpretation of increased fine-grained, fluvially derived sediments. We propose that the most significant compositional changes at ODP 658C are due to the addition of an aluminosilicate component that has a highly altered major element signature but is enriched in soluble elements like Sr and magnesium (Mg) compared to aluminum (Al) and has low 87Sr/86Sr relative to local terrigenous source areas. We interpret these characteristics to reflect authigenic sediment supply from extensive North African paleolake basins that were prevalent during the AHP.
Resumo:
Six sediment cores from the submarine delta of the Rud Hilla River in the northern part of the Persian Gulf consist of fine grained,homogeneous Holocene marls. The coarse (> 63 ~) fraction varies from 0.3 - 3.5 %. The cores are 2 - 4 m long and were taken in water depths of 8 - 56 m. In spite of the great similarity and homogeneity of the cored sediments, correspondence analysis (an extension of factor analysis) of the coarse fraction reveals the presence of four distinctive sedimentary facies: (1) a minerogenic facies, 10 km from the estuary; (2) an ophiuroidostracod facies near a lateral margin of the delta, 12 - 15 km from the estuary, (3) a benthic foraminiferal-molluskan facies, in the central part of the delta 20 km from the estuary, and near its seaward margin 120 km from the estuary, (4) a gastropod-epibiotic facies, in an area of relatively slow sedimentation on the border of the delta, 90 km from the estuary. A seventh core, taken near the seaward margin of the delta of the Rud Hilla River, penetrated homogeneous, aragonite-rich mud of late Pleistocene age. Correspondence analysis of the sand fraction of the Pleistocene sediments leads to the definition of two facies that can be readily compared with the facies identified in the Holocene cores.
Resumo:
We report oxygen and carbon isotope results of detrital carbonate grains from Heinrich layers at three sites in the North Atlantic located along a transect from the Labrador Sea to the eastern North Atlantic. Oxygen isotopic values of individual detrital carbonate grains from six Heinrich layers at all sites average - 5.6 ppm ± 1.5 ppm (1sigma; n = 166), reflecting values of dolomitic limestone derived from source areas in northeastern Canada. The d18O of bulk carbonate at Integrated Ocean Drilling Program (IODP) Site U1308 (re-occupation of Deep Sea Drilling Project (DSDP) Site 609) in the eastern North Atlantic records the proportion of detrital to biogenic carbonate and d18O decreases to - 5 ppm during Heinrich (H) events 1, 2, 4 and 5 relative to a background value of ~ 1 to 2 ppm for biogenic carbonate. Bulk d18O also decreases during H3 and H6 but only attains values of - 1ppm, indicating either a greater proportion of biogenic-to-detrital carbonate or a different source. Because the d18O of detrital carbonate is ~ 9 ppm lower than foraminifer carbonate, any fine-grained detrital carbonate not removed from the inner test chambers will lower foraminifer d18O. We conclude bulk carbonate d18O is a sensitive proxy for detrital carbonate and may be useful for identifying Heinrich layers in cores within and near the margins of the North Atlantic ice-rafted detritus (IRD) belt.
Resumo:
Light hydrocarbon (C1-C8) profiles are compared for three wells of varying maturities: two immature DSDP wells (Site 397 near the Canary Islands and Site 530A near the Walvis Ridge in the south-east Atlantic) and a mature well, the East Cameron well in the Texas Gulf Coast. Primary migration of C1 and C2 appears to be occurring in all of the sedimentary rocks examined. Primary migration of C3+ components becomes important only as fine-grained sedimentary rocks enter the catagenetic hydrocarbon generation zone or over short distances in more permeable sections. Lateral migration along bedding planes was more important than vertical migration in sedimentary rocks of all maturities. The lightest (methane, ethane and propane gases) hydrocarbon show greater fractionation than do the C4-C8 alkanes which generally show minimal fractionation during the migrational process. Subsurface diffusion coefficients for these p.p.b. quantities of C2-C5 alkanes from immature sediments from DSDP Site 530 are estimated to be several orders of magnitude less than values reported in the literature for diffusion of much larger amounts of these compounds from mature water wet sediments into air or sandstones. Since our calculations suggest light hydrocarbons are present in amounts less than their reported solubilities in pure water at 25°C, we postulate that the sediment organic matter has a substantial effect on retarding the movement of these light hydrocarbons.
Resumo:
Three sites were cored on the landward slope of the Nankai margin of southwest Japan during Leg 190 of the Ocean Drilling Program. Sites 1175 and 1176 are located in a trench-slope basin that was constructed during the early Pleistocene (~1 Ma) by frontal offscraping of coarse-grained trench-wedge deposits. Rapid uplift elevated the substrate above the calcite compensation depth and rerouted a transverse canyon-channel system that had delivered most of the trench sediment during the late Pliocene (1.06-1.95 Ma). The basin's depth is now ~3000 to 3020 m below sea level. Clay-sized detritus (<2 µm) did not change significantly in composition during the transition from trench-floor to slope-basin environment. Relative mineral abundances for the two slope-basin sites average 36-37 wt% illite, 25 wt% smectite, 22-24 wt% chlorite, and 15-16 wt% quartz. Site 1178 is located higher up the landward slope at a water depth of 1741 m, ~70 km from the present-day deformation front. There is a pronounced discontinuity ~200 m below seafloor between muddy slope-apron deposits (Quaternary-late Miocene) and sandier trench-wedge deposits (late Miocene; 6.8-9.63 Ma). Clay minerals change downsection from an illite-chlorite assemblage (similar to Sites 1175 and 1176) to one that contains substantial amounts of smectite (average = 45 wt% of the clay-sized fraction; maximum = 76 wt%). Mixing in the water column homogenizes fine-grained suspended sediment eroded from the Izu-Bonin volcanic arc, the Izu-Honshu collision zone, and the Outer Zone of Kyushu and Shikoku, but the spatial balance among those contributors has shifted through time. Closure of the Central America Seaway at ~3 Ma was particularly important because it triggered intensification of the Kuroshio Current. With stronger and deeper flow of surface water toward the northeast, the flux of smectite from the Izu-Bonin volcanic arc was dampened and more detrital illite and chlorite were transported into the Shikoku-Nankai system from the Outer Zone of Japan.
Resumo:
The chemical characterization of filter high volume (HV) and Berner impactor (BI) samples PM during RHaMBLe (Reactive Halogens in the Marine Boundary Layer) 2007 shows that the Cape Verde aerosol particles are mainly composed of sea salt, mineral dust and associated water. Minor components are nss-salts, OC and EC. The influence from the African continent on the aerosol constitution was generally small but air masses which came from south-western Europe crossing the Canary Islands transported dust to the sampling site together with other loadings. The mean mass concentration was determined for PM10 to 17 µg/m**3 from impactor samples and to 24.2 µg/m**3 from HV filter samples. Non sea salt (nss) components of PM were found in the submicron fractions and nitrate in the coarse mode fraction. Bromide was found in all samples with much depleted concentrations in the range 1-8 ng/m**3 compared to fresh sea salt aerosol indicating intense atmospheric halogen chemistry. Loss of bromide by ozone reaction during long sampling time is supposed and resulted totally in 82±12% in coarse mode impactor samples and in filter samples in 88±6% bromide deficits. A chloride deficit was determined to 8% and 1% for the coarse mode particles (3.5-10 µm; 1.2-3.5 µm) and to 21% for filter samples. During 14 May with high mineral dust loads also the maximum of OC (1.71 µg/m**3) and EC (1.25 µg/m**3) was measured. The minimum of TC (0.25 µg/m**3) was detected during the period 25 to 27 May when pure marine air masses arrived. The concentrations of carbonaceous material decrease with increasing particle size from 60% for the ultra fine particles to 2.5% in coarse mode PM. Total iron (dust vs. non-dust: 0.53 vs. 0.06 µg/m**3), calcium (0.22 vs. 0.03 µg/m**3) and potassium (0.33 vs. 0.02 µg/m**3) were found as good indicators for dust periods because of their heavily increased concentration in the 1.2 to 3.5 µm fraction as compared to their concentration during the non-dust periods. For the organic constituents, oxalate (78-151 ng/m**3) and methanesulfonic acid (MSA, 25-100 ng/m**3) are the major compounds identified. A good correlation between nss-sulphate and MSA was found for the majority of days indicating active DMS chemistry and low anthropogenic influences.
Resumo:
A more than two-decadal sediment trap record from the Eastern Boundary Upwelling Ecosystem (EBUE) off Cape Blanc, Mauritania, is analysed with respect to deep ocean mass fluxes, flux components and their variability on seasonal to decadal timescales. The total mass flux revealed interannual fluctuations which were superimposed by fluctuations on decadal timescales. High winter fluxes of biogenic silica (BSi), used as a measure of marine production (mostly by diatoms) largely correspond to a positive North Atlantic Oscillation (NAO) index (December-March). However, this relationship is weak. The highest positive BSi anomaly was in winter 2004-2005 when the NAO was in a neutral state. More episodic BSi sedimentation events occurred in several summer seasons between 2001 and 2005, when the previous winter NAO was neutral or even negative. We suggest that distinct dust outbreaks and deposition in the surface ocean in winter and occasionally in summer/autumn enhanced particle sedimentation and carbon export on short timescales via the ballasting effect. Episodic perturbations of the marine carbon cycle by dust outbreaks (e.g. in 2005) might have weakened the relationships between fluxes and large-scale climatic oscillations. As phytoplankton biomass is high throughout the year, any dry (in winter) or wet (in summer) deposition of fine-grained dust particles is assumed to enhance the efficiency of the biological pump by incorporating dust into dense and fast settling organic-rich aggregates. A good correspondence between BSi and dust fluxes was observed for the dusty year 2005, following a period of rather dry conditions in the Sahara/Sahel region. Large changes of all bulk fluxes occurred during the strongest El Niño-Southern Oscillation (ENSO) in 1997-1999 where low fluxes were obtained for almost 1 year during the warm El Niño and high fluxes in the following cold La Niña phase. For decadal timescales, Bakun (1990) suggested an intensification of coastal upwelling due to increased winds (''Bakun upwelling intensification hypothesis''; Cropper et al., 2014) and global climate change. We did not observe an increase of any flux component off Cape Blanc during the past 2 and a half decades which might support this. Furthermore, fluxes of mineral dust did not show any positive or negative trends over time which might suggest enhanced desertification or ''Saharan greening'' during the last few decades.
Resumo:
Sediment drifts on the continental rise are located proximal to the western side of the Antarctic Peninsula and recorded changes in glacial volume and thermal regime over the last ca. 15 m.y. At Ocean Drilling Program (ODP) Site 1101 (Leg 178), which recovered sediments back to 3.1 Ma, glacial-interglacial cyclicity was identified based on the biogenic component and sedimentary structures observed in X-radiographs, magnetic susceptibility and lithofacies descriptions. Glacial intervals are dominated by fine-grained laminated mud and interglacial units consist of bioturbated muds enriched in biogenic components. From 2.2 to 0.76 Ma, planktonic foraminifera and calcareous nannofossils dominate in the interglacials suggesting a shift of the Antarctic Polar Front (APF) to the south near the drifts. Prior to 2.2 Ma, cyclicity cannot be identified and diatoms dominate the biogenic component and high percent opal suggests warmer conditions south of the APF and reduced sea ice over the drifts. Analyses of the coarse-grained terrigenous fraction (pebbles and coarse sand) from Sites 1096 and 1101 record glaciers at sea-level releasing iceberg-rafted debris (IRD) throughout the last 3.1 m.y. Analyses of quartz sand grains in IRD with the scanning electron microscope (SEM) show an abrupt change in the frequency of occurrence of microtextures at ~1.35 Ma. During the Late Pliocene to Early Pleistocene, the population of quartz grains included completely weathered grains and a low frequency of crushing and abrasion, suggesting that glaciers were small and did not inundate the topography. Debris shed from mountain peaks was transported supraglacially or englacially allowing weathered grains to pass through the glacier unmodified. During glacial periods from 1.35-0.76 Ma, glaciers expanded in size. The IRD flux was very high and dropstones have diverse lithologies. Conditions resembling those at the Last Glacial Maximum (LGM) have been episodically present on the Antarctic Peninsula since ~0.76 Ma. Quartz sand grains show high relief, fracture and abrasion common under thick ice and the IRD flux is low with a more restricted range of dropstone lithologies.
Resumo:
Along the N-S-transect of DSDP-Sites 5446, 397, 141, and 366, oxygen and carbon isotopes, flux rates of calcium carbonate, terrigenous matter, and biogenic opal, clay minerals and the size distribution of terrigenous partictes were determined in order to assess the ties between atmospheric and oceanic surface and deep-water circulation off northwest Africa during the late Neogene. During the last 9 m.y., both the paleoceanography in the eastern Atlantic and west African paleodimates were intimately correlated with the evolution of the polar ice sheets as reflected in the benthos d18O curves of the 4 DSDP-Sites. These records make it possible to distinguish six major time intervals which were charaterized by long-term persistent regimes of climatic stability or climatic change. Short-term, "Milankovitch"-type cycles superimpose the long-term climatic evolution and may reflect the chronostratigraphic control fluctuations of the solar insolation persisting back to pre-Pleistocene times. Relatively stable, warm climates prevailed during the late Tortonian/early Messinean, 9 to 6 m.y., and the early Pliocene, 4.5 to 3.5 m.y. ago. Based on d18O curves, the amplitudes of short-term climatic variation were generally low, and the ice sheets were smaller than during peak Holocene time. Oceanic circulation and resulting paleoproductivity in upwelling zones were insignificant. The strength of dust supplying meridional trade winds was low (3 to 5 m/s), interglacial-style zonal winds near the ITCZ were dominant, as indicated by the high abundance of kaolinite. Phases of fluvial sediment supply were common. Humidity was characteristic of the climate in northwest Africa for the major part of this time. Major episodes of climatic deterioration in the subtropics occurred in the latest Miocene/early Pliocene, between some 5.6 and 5.2 and between 4.9 and 4.6 m.y. ago, in the late Pliocene, between 3.2 and 2.4 m.y. ago, and again in the Quaternary, near 1 m.y. ago. The episodes were correlated with marked increases of the global ice volume, as revealed by drastic increases of d18O values. They suggest sea-level falls of up to 70 m below the present sea level in the latest Miocene and earliest Pliocene and of 145 m in the latest Pliocene and Quaternary. The climatic changes resulted in strongly enhanced meridional trade winds as suggested by coarser terrigenous grain-sizes, increased mass accumulation rates of eolian dust, and changes in clay-mineral composition from dominantly kaolinite to illite and chlorite. The meridional trade winds reached speeds of 8 to 10 m/s with a maximum near 15 m/s. The enhanced winds probably led t o intensified coastal upwelling as shown by the contemporaneous local increase i n the deposition of biogenic silica and the local depletion of 13C at Site 397. The most drastic environmental changes near 2.4 and 1 m.y. ago coincide with hiatuses which may indicate phases of general erosion due to strongly enhanced deep-water circulation in the northeast At1antic along the northwest African continental margin. The occasional occurrence of quartz grains coarser than 250 µm may suggest ice-rafted debris in sediments off Morocco. During these time intervals the climate in NW-Africa was dominantly arid. Nevertheless, fluvial runoff (and humidity) continued to be important during intermittent warm phases of the short-term climatic cycles. During the end and the beginning of (inter-) glacial times, fluvial supply of nutrients seems to be the dominant factor, controling phases of enhanced paleoproductivity observed off northwest Africa, whereas during phases of glacial maximum strenger fertility of (increased) coastal upwelling becomes more important. A long-term evolution of paleoenvironments during the last 40 m.y. is depicted in the sediments of Site 366 and is clearly controlled by the plate tectonic route of this Site. During Oligocene times, Site 366 lay in the center of the equatorial upwelling, as shown by the high content of biogenic silica contributing up to 100 % of the carbonate-free sediment fraction >6 µm. The influence of equatorial upwelling abruptly terminated near 15 m.y. ago, a change in the record exaggerated by a hiatus of about 2 m.y. Prior to 25 m.y., the terrigenous input at the paleolatitude of Site 366 was restricted t o eolian sediment supply from South Africa by southeasterly trade winds, as shown by dominantly illite and chlorite in the clay fraction and extremely fine-grained terrigenous matter. Near the Oligocene/Miocene boundary, Site 366 drifted across the equator into the belt of the northeasterly trade winds, which is inferred from the increased content of kaolinite and coarser grain sizes of the terrigenous sediment fraction. The clay-mineral and grain-size compositions of Site 366 do not reflect a noteworthy northward shift of the ITCZ during late Miocene and early Pliocene times, i.e. no marked global circulation asymmetry due to the possible absence of a major Northern Hemisphere glaciation (Flohn 1981). This lack of a more northerly position of the ITCZ may result from a bipolar glaciation already existing during late Miocene times, such as also suggested by the evidence of tillites on Iceland and in southern Alaska during those intervals (e.g., Denton & Amstrong 1969, Mudie & Helgason 1983).