539 resultados para oxygen-18


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Samples for total organic carbon (TOC) analysis were collected on WOCE Line P15S (0° to 67°S along 170°W) and from 53° to 67°S along 170°E in the western South Pacific, and on Line I8 (5°N to 43°S along 80°/90°E) in the central Indian Ocean. TOC concentrations in the upper ocean varied greatly between the regions studied. Highest surface TOC concentrations (81-85 µM C and 68-73 µM C) were observed in the warmest waters (>27°C) of the western South Pacific and central Indian Oceans, respectively. Lowest surface TOC concentrations (45-65 µM C) were recorded in the southernmost waters occupied (>50°S along 170°W and 170°E). Deep water (>1000 m) TOC concentrations were uniform across all regions analyzed, averaging between 42.3 and 43 µM C (SD: ±0.9 µM C). Mixing between TOC-rich surface waters and TOC-poor deep waters was indicated by the strong correlations between TOC and temperature (r2>0.80, north of 45°S) and TOC and density (r2>0.50, southernmost regions). TOC was inversely correlated with apparent oxygen utilization (AOU) along isopycnal surfaces north of the Polar Frontal Zone (PFZ) and at depths <500 m. The TOC:AOU molar ratios at densities of sigmaT 23-27 ranged from -0.15 to -0.34 in the South Pacific and from -0.13 to -0.31 in the Indian Ocean. These ratios indicate that TOC oxidation was responsible for 21%-47% and 18%-43% of oxygen consumption in the upper South Pacific and Indian Oceans, respectively. At greater depths, TOC did not contribute to the development of AOU. There was no evidence for significant export of dissolved and suspended organic carbon along isopycnal surfaces that ventilate near the PFZ.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Temperate, transitional and subtropical waters of the remote Azores Front region east of Azores (24-40°N, 22-32°W) were sampled during three cruises conducted under increasing stratification conditions (April 1999, May 1997 and August 1998). Despite the temporal increase of surface temperature (by 5 °C) and stratification (by 2.1 1/min**2), as well as the thermocline shoaling (by ~15 m), dissolved organic carbon (DOC) and nitrogen (DON) in the surface layer were not significantly different for the early spring, late spring and summer periods, with average concentrations of 69±2 µM-C and 5.2±0.4 µM-N, respectively. The surface excess of semi-labile DOC, compared with the baseline DOC concentration in the deep ocean (47±2 µM-C), represents 33% of the bulk DOC concentration and as much as 85% of the TOC (=POC+DOC) excess. When compared with the winter baseline (56±2 µM-C), the seasonal surface DOC excess is 20% of the bulk DOC concentration and 87% of the seasonal TOC excess. These results confirm the major role played by DOC in the carbon cycle of surface waters of the Azores Front region. The total amount of bioreactive DOC transported from the temperate to the subtropical North Atlantic by the Ekman flux between March and December represents only ~15% of the average annual primary production, and ~15% and ~30% of the measured sinking POC flux+vertical DOC eddy diffusion during early spring and summer, respectively. Vertical eddy diffusion is 35% and 2% of the spring and summer sinking POC flux, respectively. On the other hand, DOC only contributes 13% to the local oxidation of organic matter in subsurface waters (between the pycnocline and 500 m) of the study region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To understand the adaptation of euphausiid (krill) species to oxygen minimum zones (OMZ), respiratory response and stress experiments combining hypoxia/reoxygenation exposure with warming were conducted. Experimental krill species were obtained from the Antarctic (South Georgia area), the Humboldt Current system (HCS, Chilean coast), and the Northern California Current system (NCCS, Oregon). Euphausia mucronata from the HCS shows oxyconforming or oxygen partial pressure (pO2)-dependent respiration below 80% air saturation (18 kPa). Normoxic subsurface oxygenation in winter posed a "high oxygen stress" for this species. The NCCS krill, Euphausia pacifica, and the Antarctic krill, Euphausia superba maintain respiration rates constant down to low critical pO2 values of 6 kPa (30% air saturation) and 11 kPa (55% air saturation), respectively. Antarctic krill had the lowest antioxidant enzyme activities, but the highest concentrations of the molecular antioxidant glutathione (GSH) and was not affected by 6 h exposure to moderate hypoxia. Temperate krill species had higher SOD (superoxide dismutase) values in winter than in summer, which relate to higher winter metabolic rate (E. pacifica). In all species, antioxidant enzyme activities remained constant during hypoxic exposure at habitat temperature. Warming by 7°C above habitat temperature in summer increased SOD activities and GSH levels in E. mucronata (HCS), but no oxidative damage occurred. In winter, when the NCCS is well mixed and the OMZ is deeper, +4°C of warming combined with hypoxia represents a lethal condition for E. pacifica. In summer, when the OMZ expands upwards (100 m subsurface), antioxidant defences counteracted hypoxia and reoxygenation effects in E. pacifica, but only at mildly elevated temperature (+2°C). In this season, experimental warming by +4°C reduced antioxidant activities and the hypoxia combination again caused mortality of exposed specimens. We conclude that a climate change scenario combining warming and hypoxia represents a serious threat to E. pacifica and, as a consequence, NCCS food webs.