678 resultados para leg thrombosis
Resumo:
Well-preserved Mesozoic radiolarian faunas have been recovered at four sites of Deep Sea Drilling Project Leg 62. Late Early Cretaceous assemblages, which occur always with foraminifers or calcareous nannoplankton, allow the description of 21 new species, the introduction of a new zone scheme, and calibration of the radiolarian zones with the geochronological scale.
Resumo:
Drilling in the Caribbean Sea during Ocean Drilling Program Leg 165 has recovered a large number of silicic tephra layers and led to the discovery of three major episodes of explosive volcanism that occurred during the last 55 m.y. on the margins of this evolving ocean basin. The earliest episode is marked by Paleocene to early Eocene explosive volcanism on the Cayman Rise, associated with activity of the Cayman arc, an island arc that was the westward extension of the Sierra Maestra volcanic arc in southern Cuba. Caribbean sediments also document a major mid- to late Eocene explosive volcanic episode that is attributed to ignimbrite-forming eruptions on the Chortis Block in Central America to the west. This event is contemporaneous with the first phase of activity of the Sierra Madre volcanic episode in Mexico, the largest ignimbrite province on Earth. In the Caribbean sediments, a Miocene episode of explosive volcanism is comparable to the Eocene event, and also attributed to sources in the Central American arc to the west. Radiometric 40Ar/39Ar dates have been obtained for biotites and sanidines from 27 tephra layers, providing absolute ages for the volcanic episodes and further constraining the geochronology of Caribbean sediments. Volcanic activity of the Cayman arc is attributed to the northward subduction of the leading edge of the oceanic plate that carried the Caribbean oceanic plateau. Although the factors generating the large episodes of Central American explosive volcanism are unclear, we propose that they are related to contemporary major readjustments of plate tectonic configuration in the Pacific.
Resumo:
Five of the six sites drilled during Leg 77 of the Deep Sea Drilling Project yielded Cretaceous sediments. Two of these sites, 535 and 540, form a composite section that spans the upper Berriasian through most of the Cenomanian. Olive black marly limestones in this interval yield relatively rich, well-preserved nannofossil assemblages that allow biostratigraphic subdivision of the sequence. This composite section provides important information on the Early Cretaceous history of the Gulf of Mexico, as well as additional information on tropical Lower Cretaceous nannofossil assemblages. The post-Cenomanian nannofossil (and sedimentary) record is limited to a thin, condensed section of Santonian through lower Maestrichtian pelagic sediments at one site (538) and is absent or represented by redeposited material at the other sites. Two new genera, Perchnielsenella and Darwinilithus, are described. Two new taxa, Darwinilithus pentarhethum and Lithraphidites acutum ssp. eccentricum, are described; and two new combinations, Rhagodiscus reightonensis and Perchnielsenella stradneri, are propose.
Resumo:
Carotenoids were analysed in ca. 1-cm thick subsamples of three laterally time-equivalent sapropels from a west-east transect of the eastern Mediterranean Basin to study euxinic periods during Pliocene sapropel formation. The amount of intact isorenieratene (summed all-trans and cis isomers), ranged from non-detectable at the base and top of a sapropel up to 140 µg/g sediment in the central parts. Isorenieratene accumulation rates at the central and western site are remarkably similar and increase sharply to levels of up to 3.0 mg/m**2/ yr in the central part of the sapropel and then drop to low levels. This pattern indicates an expansion of euxinic conditions reaching into the photic zone, followed by deepening of the chemocline during deposition of this Pliocene sapropel. The sapropel from the easternmost site of the basin, which contains less organic carbon, shows much lower isorenieratene accumulation rates and even absence of isorenieratene in the central part of the sapropel. Ba/Al ratios indicate enhanced palaeoproductivity during sapropel formation, supporting previously proposed models, according to which increased productivity is the driving force for the generation of euxinic conditions.
Resumo:
At Ocean Drilling Program (ODP) Leg 189 Sites 1170-1172, the climatologically critical Eocene-Oligocene (E-O) transition is barren of any calcareous microfossils but contains rich marine organic walled dinoflagellate cyst (dinocyst) and diatom assemblages, suitable for detailed biostratigraphic and paleoenvironmental analysis. The resulting first-ever integrated dinocyst/diatom magnetostratigraphy allows confident correlation of the E-O interval between all Leg 189 sites, including Site 1168. Our correlations indicate that the (deep) opening of the Tasmanian Gateway occurred quasi-synchronously throughout the Tasmanian region, starting at ~35.5 Ma. At Sites 1170-1172, quantitatively, three distinct dinocyst assemblages may be distinguished that reflect the relatively rapid and pronounced stepwise environmental changes associated with the E-O transition in the Tasmanian region, from a pro-deltaic setting to a deep marine pelagic setting. Moreover, synchronous with the deepening of the gateway, at the southern and eastern Sites 1170-1172, typical endemic Antarctic assemblages were replaced by more cosmopolitan dinocyst communities. In marked contrast, at Site 1168 off western Tasmania, endemic Antarctic taxa are virtually absent during the E-O transition. At Sites 1170-1172, the endemic Antarctic dinocyst assemblage (Transantarctic Flora) drastically changes into a more cosmopolitan assemblage at ~35.5 Ma, with a more offshore character, reflecting the arrival of different oceanographic and environmental conditions associated with the deepening of the Tasmanian Gateway. In turn, this assemblage grades at ~34 Ma into one more typical for even more offshore and/or upwelling conditions at Site 1172. In slightly younger deposits at all sites, organic microfossils are virtually absent, reflecting winnowing and oxidation, indicative of a next step of oceanographic development. This phase may be dated as close to the Oceanic Anoxic (Oi)-1 18O (Antarctic glaciation) event (~33.3 Ma). In a single productive sample from the earliest Oligocene the northern Site 1172, a relatively warm-water cosmopolitan assemblage has been recovered. This aspect contrasts findings from coeval deposits from the Ross Sea, where endemic Antarctic species remain dominant. Somewhere between the paleogeographic positions of Site 1172 and the Ross Sea, a strong differentiation of surface waters occurred in the earliest Oligocene, possibly reflecting the onset of the Antarctic Circumpolar Current.
Resumo:
Leg 27 sediments were analyzed for total carbon and acid-insoluble (organic) carbon using a LECO acid-base Analyzer. The 3-cc sediment samples were first dried at 105°-110°C and then ground to a homogeneous powder. The ground sediment was redried and two samples, a 0.1-g and a 0.5-g sample, were then weighed into LECO clay crucibles. The 0.5-g sample was acidified with diluted hydrochloric acid and washed with distilled water. The sample was then dried and analyzed for acid-insoluble carbon, listed in the table as "organic" carbon. The 0.1-g sample was analyzed for total carbon without further treatment. If the result showed less than 10% CaCO3, an additional 0.5-g sample was analyzed for greater accuracy. The calcium carbon percentages were calculated as follows: (% total C-% organic C) * 8.33 = % CaCO3. Although other carbonates may be present, all acid-soluble carbon was calculated as calcium carbonate. All results are given in weight percent.
Resumo:
During DSDP Leg 70, a 1.60 m thick manganese oxide layer was sampled in hole 509B. This deposit is formed of alternating layers of hard plates of pure todorokite, about 2 mm thick, and of a more powdery material deeply impregnated with manganese oxide, about 3 mm thick. A SEM study of the plates and the associated powder shows that the powdery material is a transformation of a pre-existing sediment, while the plates are a direct precipitation from a hydrothermal solution. The uranium series disequilibrium method was used to determine the ages of the plates. They are found to be in good chronological sequence and in accordance with the sedimentation rate of the area (4.9 cm/10^3 years) which implies that they have been formed at the sediment-seawater interface during a pulsed injection of hydrothermal solution. The powder presents systematically an "older age" which is explained by a slowing down of the injection while the normal sediment settles; the older age is due to the 230Th excess of the sediment.
Resumo:
Little is known about the fluxes to and from the ocean during the Cenozoic of phosphorus (P), a limiting nutrient for oceanic primary productivity and organic carbon burial on geologic timescales. Previous studies have concluded that dissolved river fluxes increased worldwide during the Cenozoic and that organic carbon burial decreased relative to calcium carbonate burial and perhaps in absolute terms as well. To examine the apparent contradiction between increased river fluxes of P (assuming P fluxes behave like the others) expected to drive increased organic carbon burial and observations indicating decreased organic carbon burial, we determined P accumulation rates for equatorial Pacific sediments from Ocean Drilling Program leg 138 sites in the eastern equatorial Pacific and leg 130 sites on the Ontong Java Plateau in the western equatorial Pacific. Although there are site specific and depth dependent effects on P accumulation rates, there are important features common to the records at all sites. P accumulation rates declined from 50 to 20 Ma, showed some variability from 20 to 10 Ma, and had a substantial peak from 9 to 3 Ma centered at 5-6 Ma. These changes in P accumulation rates for the equatorial Pacific are equivalent to substantial changes in the P mass balance. However, the pattern resembles neither that of weathering flux indicators (87Sr/86Sr and Ge/Si ratios) nor that of the carbon isotope record reflecting changes in organic carbon burial rates. Although these P accumulation rate patterns need confirmation from other regions with sediment burial significant in global mass balances (e.g., the North Pacific and Southern Ocean), it appears that P weathering inputs to the ocean are decoupled from those of other elements and that further exploration is needed of the relationship between P burial and net organic carbon burial.
Resumo:
Comprehensive isotopic studies based on data from the Deep Sea Drilling Project have elucidated numerous details of the low- and high-temperature mechanisms of interaction between water and rocks of ocean crustal seismic Layers 1 and 2. These isotopic studies have also identified climatic changes during the Meso-Cenozoic history of oceans. Data on the abundance and isotopic composition of sulfur in the sedimentary layer as well as in rocks of the volcanic basement are more fragmentary than are oxygen and carbon data. In this chapter we specifically concentrate upon isotopic data related to specific features of the mechanisms of low-temperature interaction of water with sedimentary and volcanogenic rocks. The Leg 59 data provide a good opportunity for such lithologic and isotopic studies, because almost 600 meters of basalt flows and sills interbedded with tuffs and volcaniclastic breccias were cored during the drilling of Hole 448A. Moreover, rocks supposedly exposed to hydrothermal alteration play an important role at the deepest horizons of that mass. Sulfur isotopic studies of the character of possible biogenic processes of sulfate reduction in sediments are another focus, as well as the nature and origin of sulfide mineralization in Layer-2 rocks of remnant island arcs. Finally, oxygen and carbon istopic analyses of biogenic carbonates in the cores also enabled us to investigate the effects of changing climatic conditions during the Cenozoic. These results are compared with previous data from adjacent regions of the Pacific Ocean. Thus this chapter describes results of isotopic analyses of: oxygen and sulfur of interstitial water; oxygen and carbon of sedimentary carbonates and of calcite intercalations and inclusions in tuffs and volcaniclastic breccias interbedded with basalt flows; and sulfur of sulfides in these rocks.
Resumo:
Interstitial waters were squeezed from strata recovered at Sites 637-641 of ODP Leg 103 on the Galicia margin, along the northwestern Iberian continental margin in the northeast Atlantic. Chemical profiles of Site 638 show the most complexity, which appears to be related to an unconformity in the strata between Cretaceous and Neogene sediments and to rapid deposition of Cretaceous syn-rift sediments upon pre-rift strata. Analyses of waters from all of the Leg 103 sites show generally antithetical trends for calcium and magnesium; calcium increases with depth as magnesium decreases. No calcium-magnesium 'crossover' profiles are observed in these data. Data from Site 637 show an unusual pattern; calcium increases with increasing depth, but magnesium remains relatively constant. Sulfate is either stable or shows an overall decrease with depth, and boron profiles show some structure. At all but one site (Site 638), strontium profiles do not show marked depth structure. The structure of alkalinity and silica profiles is highly site dependent. Bromide profiles are, in general, constant. In nearly every case, observed bromide concentrations are near average seawater values. Relatively low concentrations of iron and manganese are common within the upper 10 m of the sediment sequence and typically are near detection limits at deeper depths