566 resultados para lanthanides and yttrium
Resumo:
The Leg 81 basalts, drilled either from the margins ("dipping reflectors" sequence: Holes 552, 553A, and 554A) or from the "continental" side (Hole 555) of the Rockall Plateau microcontinent, are strongly light rare-earth element (LREE) depleted oceanic tholeiites. The basalts from the four holes are almost similar. Most of their primary characteristics have been preserved, although they have suffered alteration by seawater. From the petrological and mineralogical points of view, they resemble deep-ocean-floor basalts but show some peculiarities (occurrence of pigeonite and ilmenite as normal components of the groundmass differentiation sequences toward ferrobasalts). Their geochemical characteristics are dominated by their extreme depletion in the most hygromagmaphile elements (Th, Ta, La, and Nb), the concentrations of which are sometimes lower than the corresponding chondritic values. Leg 81 basalts are thus clearly different from continental tholeiites (flood basalts): Possible equivalents in the Thulean Tertiary Magmatic Province include the LREE-depleted tholeiites from the Upper Basaltic Series of the Faeroe Islands and the Preshal Mhor basalt type from the British Tertiary Province.
Resumo:
New geological and geophysical data on the Amirante Arc, which locates to the south of the Seychelles Islands, are presented. These data were obtained by Pacific Oceanological Institute during the 33-rd cruise of R/V Professor Bogorov in 1990. The Amirante Arc represents a seamount chain, which has submeridional strike and total length about 400 km. To the west of the Amirante Arc there are a deep sea trench and a back-arc basin, i.e. this area is characterized by structural elements associated with the subduction zone of Western Pacific type. According to our data the Amirante Arc is composed by tholeiites of ocean plateau type. This facts are evidences that the Amirante Arc differs from typical Pacific island arcs. This gives an opportunity to distinguish a special type of oceanic structures, i.e. non-volcanic (amagmatic) ridges. The Amirante Ridge has been probably formed as a result of oceanic crust heaping due to horizontal displacements of its blocks in the process of spreding ridge formation in the Indian Ocean during Cretaceous-Paleogene.
Resumo:
The Astoria submarine fan, located off the coast of Washington and Oregon, has grown throughout the Pleistocene from continental input delivered by the Columbia River drainage system. Enormous floods from the sudden release of glacial lake water occurred periodically during the Pleistocene, carrying vast amounts of sediment to the Pacific Ocean. DSDP site 174, located on the southern distal edge of the Astoria Fan, is composed of 879 m of terrigenous sediments. The section is divided into two major units separated by a distinct seismic discontinuity: an upper, turbidite fan unit (Unit I), and an underlying finer-grained unit (Unit II). Both units have overlapping ranges of Nd and Hf isotope compositions, with the majority of samples having e-Nd values of -7.1 to -15.2 and eHf values -6.2 to -20.0; the most notable exception is the uppermost sample in the section, which is identical to modern Columbia River sediment. Nd depleted mantle model ages for the site range from 2.0 to 1.2 Ga and are consistent with derivation from cratonic Proterozoic source regions, rather than Cenozoic and Mesozoic terranes proximal to the Washington-Oregon coast. The Astoria Fan sediments have significantly less radiogenic Nd (and Hf) isotopic compositions than present day Columbia River sediment (e-Nd=-3 to -4; [Goldstein, S.J., Jacobsen, S.B., 1987. Nd and Sr isotopic systematics of river water suspended material: implications for crustal evolution. Earth. Planet. Sci. Lett. 87, 249-265; doi:10.1016/0012-821X(88)90013-1]), and suggest that outburst flooding, tapping Proterozoic source regions, was the dominant sediment transport mechanism in the genesis and construction of the Astoria Fan. Pb isotopes form a highly linear 207Pb/204Pb - 206Pb/204Pb array, and indicate the sediments are a binary mixture of two disparate sources with isotopic compositions similar to Proterozoic Belt Supergroup metasediments and Columbia River Basalts. The combined major, trace and isotopic data argue that outburst flooding was responsible for depositing the majority (top 630 m) of the sediment in the Astoria Fan.
Resumo:
The book presents results of comprehensive geological and geophysical studies, carried out in the Cape Verde fault zone in the 3-rd cruise of R/V Akademik Nikolaj Strakhov (1986). Detailed characterization of bottom relief, thickness and structure of the sedimentary cover, magnetic field, crust structure, lithology and stratigraphy of sediments, petrography and geochemistry of magmatic rocks. Conclusions about tectonic layering of the crust and upper mantle in the fault zone, and about a concurrent structural section of large mantle inhomogeneities have been done. The book is the first monographic description of a major fault structure of the ocean floor.
Resumo:
This paper reports results of petrographic and geochemical studies of Miocene-Pleistocene volcanic rocks that accompanied formation of deep-water basins of the Sea of Japan and Sea of Okhotsk. Geochemical types of these rocks, their geodynamic settings, and their derivation from different magmatic sources were determined. Marginal-sea basaltoids from the Sea of Japan are derivatives of fluid-enriched mantle (EMI), while volcanics from the Kuril basin were generated from mantle enriched in continental crust matter (EMU). In spite of different conditions of their genesis, they have some common geochemical features, in particular, their calc-alkaline signatures. These traces of influence of the sialic crust on magma generation confirm development of the basins of both these seas on the continental basement.
Resumo:
We report the major, rare earth, and other trace element compositions of clinopyroxenes from two Leg 140, Hole 504B diabase dikes. These pyroxenes reflect a complex history of crystal growth and magma evolution. The large ranges of composition found reflect incorporation of exotic phenocrysts into the melt, the early formation of crystal clots before dike intrusion during an undercooling event, and in-situ fractionation of melt during and following dike emplacement. Some of the pyroxenes occur in coarse two- and three-phase glomerocrysts, which may be ôprotogabbrosö representing early stages of melt crystallization in the lower crust. Large variations in trace element composition are found. These likely reflect heterogeneous nucleation and growth of plagioclase and pyroxene in the melt, as well as complex interface kinetics that may affect partition coefficients during rapid crystal growth expected during undercooling. This can explain the formation of irregular chemical sector zoning in some equant anhedral phenocrysts. Undercooling of magmas in the lower crust most likely reflects input of fresh hot melt into a stagnating melt-storage zone. Dikes intruded upward from an inflated melt-storage zone during such a cycle are likely to be larger than those intruded from the storage zone between such cycles, when it would be deflated, consistent with the greater overall thickness of the phyric dikes in the Leg 140 section of Hole 504B.
Resumo:
This collective monography by a group of lithologists from the Geological Institute of the USSR Academy of Sciences summarizes materials of the Deep-Sea Drilling Project from the Atlantic Ocean. It gives results of processing materials on the sequences drilled during DSDP Legs 41, 45, 48 and 49. These studies were based on lithological-facial analysis combined with detailed mineralogical-petrographic description. Its chapters give a number of ideas on formation of the Earth sedimentary cover, which can be used for compilation of regional and global schemes of ocean paleogeography, reconstruction of history of some structures in the World Ocean, correlation between sedimentary processes on continents and in oceans, estimation of perspectives for oil and gas fields and ore formation.
Resumo:
Sixty-five chert, porcellanite, and siliceous-chalk samples from Deep Sea Drilling Project Leg 62 were analyzed by petrography, scanning electron microscopy, analysis by energy-dispersive X-rays, X-ray diffraction, X-ray spectroscopy, and semiquantitative emission spectroscopy. Siliceous rocks occur mainly in chalks, but also in pelagic clay and marlstone at Site 464. Overall, chert probably constitutes less than 5% of the sections and occurs in deposits of Eocene to Barremian ages at sub-bottom depths of 10 to 820 meters. Chert nodules and beds are commonly rimmed by quartz porcellanite; opal-CT-rich rocks are minor in Leg 62 sediments 65 to 108 m.y. old and at sub-bottom depths of 65 to 520 meters. Chert ranges from white to black, shades of gray and brown being most common; yellow-brown and red-brown jaspers occur at Site 464. Seventy-eight percent of the studied cherts contain easily recognizable burrow structures. The youngest chert at Site 463 is a quartz cast of a burrow. Burrow silica maturation is always one step ahead of host-rock silicification. Burrows are commonly loci for initial silicification of the host carbonate. Silicification takes place by volume-f or-volume replacement of carbonate sediment, and more-clay-rich sediment at Site 464. Nannofossils are commonly pseudomorphically replaced by quartz near the edges of chert beds and nodules. Other microfossils, mostly radiolarians and foraminifers, whether in chalk or chert, can be either filled with or replaced by calcite, opal-CT, and (or) quartz. Chemical micro-environments ultimately control the removal, transport, and precipitation of calcite and silica. Two cherts from Site 465 contain sulfate minerals replaced by quartz. Site 465 was never subaerially exposed after sedimentation began, and the formation of the sulfate minerals and their subsequent replacement probably occurred in the marine environment. Several other cherts with odd textures are described in this paper, including (1) a chert breccia cemented by colloform opal-CT and chalcedony, (2) a transition zone between white porcellanite containing opal-CT and quartz and a burrowed brown chert, consisting of radial aggregates of opal-CT with hollow centers, and (3) a chert that consists of silica-replaced calcite pseudospherules interspersed with streaks and circular masses of dense quartz. X-ray-diffraction analyses show that when data from all sites are considered there are poorly defined trends indicating that older cherts have better quartz crystallinity than younger ones, and that opal-CT crystallite size increases and opal-CT cf-spacings decrease with depth of occurrence in the sections. In a general way, depth of burial and the presence of calcite promote the ordering in the opal-CT crystal structure which allows its eventual conversion to quartz. Opal-CT in porcellanites converts to quartz after reaching a minimum d-spacing of 4.07 Å. Quartz/opal-CT ratios and quartz crystallinity vary randomly on a fine scale across four chert beds, but quartz crystallinity increases from the edge to the center of a fifth chert bed; this may indicate maturation of the silica. Twenty-four rocks were analyzed for their major- and minor-element compositions. Many elements in cherts are closely related to major mineral components. The carbonate component is distinguished by high values of CaO, MgO, Mn, Ba, Sr, and (for unknown reasons) Zr. Tuffaceous cherts have high values of K and Al, and commonly Zn, Mo, and Cr. Pure cherts are characterized by high SiO2 and B. High B may be a good indicator of formation of chert in an open marine environment, isolated from volcanic and terrigenous materials.
Resumo:
This paper presents data on chemical composition of bottom sediments from the Chukchi Sea and the adjacent Arctic Ocean. Multivariate statistical techniques were used for analysis of the data set and revealed that grain size fractionation of the original terrigenous component during sedimentation was the major factor of clustering of the samples in study. Secondary factors include accumulation of biogenic siliceous and carbonate material and chemogenic or biochemical accumulation of iron, manganese, and some trace elements. The latter factor was significant in areas of tectonic activity within the graben-rift system of the Chukchi Sea.
Resumo:
Major oxide and trace element determinations of the composition basalts from the bottom of Hole 487, together with microprobe analyses of their minerals (olivine, magnesiochromite, salite, and plagioclase), prove that they are depleted oceanic tholeiites.
Resumo:
Epiclastic volcanogenic rocks recovered from the Kerguelen Plateau during Ocean Drilling Program Legs 119 and 120 comprise (pre-)Cenomanian(?) claystones (52 m thick, Site 750); a Turonian(?) basaltic pebble conglomerate (1.2 m thick, Site 748; Danian mass flows (45 m thick, Site 747); and volcanogenic debris flows of Quaternary age at Site 736 (clastic apron of Kerguelen Island). Pyroclastic rocks comprise numerous Oligocene to Quaternary marine ash layers. The epiclastic sediments with transitional mid-ocean-ridge basalt (T-MORB) origin indicate weathering (Site 750) and erosion (Site 747) of Early Cretaceous T-MORB from a then-emergent Kerguelen Plateau, connected to Late Cretaceous tectonic events. The basal pebble conglomerate of Site 748 has an oceanic-island basalt (OIB) composition and denotes erosion and reworking of seamount to oceanic-island-type volcanic sources. The vitric- to crystal-rich marine ash layers are a few centimeters thick, have rather uniform grain sizes around 60 ± 40 µm, and are a result of Plinian eruptions. Crystal-poor silicic vitric ashes may also represent co-ignimbrite ashes. The ash layers have bimodal, basaltic, and silicic compositions with a few intermediate shards. The basaltic ashes are evolved high-titanium T-MORB; a few grains in a silicic pumice lapilli layer have a low-titanium basaltic composition. The silicic ashes comprise trachytic and rhyolitic glass shards belonging to a high-K series, except for a few low-K glasses admixed to a basaltic ash layer. Feldspar and clinopyroxene compositions fit the glass chemistry: high-Ti tholeiite-basaltic glasses have Plagioclase of An40-80 and pigeonite to augite clinopyroxene compositions. Silicic ashes have K-rich anorthoclase and minor Plagioclase around An20 and ferriaugitic to hedenbergitic clinopyroxene compositions. The line of magmatic evolution for the glass shards is not compatible with simple two-end member (high-Ti T-MORB and high-K rhyolite) mixing, but favors successive Ca-Mg-Fe pyroxene, Ti magnetite, and apatite fractionation, and K-rich alkali feldspar fractionation in trachytic magmas to yield rhyolitic compositions. Plagioclase fractionation occurs throughout. This qualitative model is in basic accordance with the observed mineral assemblage. However, as the time span for explosive volcanism spans >30 m.y., this basic model cannot comply with fractional crystallization in a single magma reservoir. The ash layers resulted from highly explosive eruptions on Kerguelen and, with less probability, Heard islands since the Oligocene. The explosive history starts with widespread Oligocene basaltic ash layers that indicate sea-level or subaerial volcanism on the Northern Kerguelen Plateau. After a hiatus of 24 m.y.(?), explosive magmatic activity was vigorously renewed in the late Miocene with more silicic eruptions. A peak in explosive activity is inferred for the Pliocene-Pleistocene. The composition and evolution of Kerguelen Plateau ash layers resemble those from other hotspot-induced, oceanic-island realms such as Iceland and Jan Mayen in the North Atlantic, and the Canary Islands archipelago in the Central Atlantic.
Resumo:
Volcaniclastic rocks of Late Cretaceous age occur in four out of five sites (525, 527, 528, 529) drilled on the crest and the northwest flank of the Walvis Ridge during Leg 74. They are mostly interlayered with and overlie basement in the lowermost 10-100 m of the sedimentary section. Rocks from Holes 525A and 528 were studied megascopically and microscopically, by XRD, and XRF chemical analyses of whole-rock major and trace elements were undertaken. The dominant rock of Hole 528 volcaniclastics is a fine-grained (silt to fine sand), mostly matrix-bearing (partly matrix-rich) vitric "tuff," occurring as 5-110 cm thick, partly graded layers, some of which are distinctly bedded. Volcaniclastics of Hole 525A are generally richer in sanidine crystals. Most rocks contain some nonvolcanic clasts, chiefly foraminifers and lesser amounts of shallow-water fossil debris. Scoria shards, clasts of tachylite, and fine-grained basalts as well as chemical analyses suggest a basaltic to intermediate composition for most rocks of Hole 528, whereas volcaniclastics of Hole 525A are more silicic. The occurrence of tachylite and epiclastic, coarse-grained, basaltic clasts throughout the volcaniclastic sequence at Site 528 indicates shallow-water eruptions and perhaps even ocean island volcanism. The minor occurrence in Hole 528 of trachytic? pumice shards with phenocrysts of K-feldspar and the abundance of such shards in rocks from Hole 525A indicate Plinian eruptions characteristic of more mature stages of ocean island evolution. The sedimentary structures of volcaniclastic layers and their occurrence within deep sea calcareous oozes indicate a mass flow origin. Diagenetic alteration of the volcaniclastic rocks is pronounced, and four major stages of glass shard alteration are distinguished. Despite the effects of alteration and small-scale redistribution of elements and the admixture of nonvolcanic components, there were no drastic changes in the chemical composition of the rocks, except for pronounced increases in K and Rb and decreases in Ca and Fe. The basaltic volcaniclastic rocks very much resemble basement basalts in that they are moderately evolved tholeiites derived from an LIL-enriched mantle source with Zr/Nb ratios (Hole 528) of 5 to 6. This, in conjunction with the interbedding of volcaniclastic rocks and basement lavas, indicates contemporaneous seamount or island and basement volcanic activity involving magmas derived from similar sources.
Resumo:
The northwest trending walls of the Pito Deep Rift (PDR), a tectonic window in the southeast Pacific, expose in situ oceanic crust generated ?3 Ma at the superfast spreading southern East Pacific Rise (SEPR). Whole rock analyses were performed on over 200 samples of dikes and lavas recovered from two ~8 km**2 study areas. Most of the PDR samples are incompatible-element-depleted normal mid-ocean ridge basalts (NMORB; (La/Sm)N < 1.0) that show typical tholeiitic fractionation trends. Correlated variations in Pb isotope ratios, rare earth element patterns, and ratios of incompatible elements (e.g., (Ce/Yb)N) are best explained by mixing curves between two enriched and one depleted mantle sources. Pb isotope compositions of most PDR NMORB are offset from SEPR data toward higher values of 207Pb/204Pb, suggesting that an enriched component of the mantle was present in this region in the past ?3 Ma but is not evident today. Overall, the PDR crust is highly variable in composition over long and short spatial scales, demonstrating that chemically distinct lavas and dikes can be emplaced within the same segment over short timescales. However, the limited spatial distribution of high 206Pb/204Pb samples and the occurrence of relatively homogeneous MgO compositions (ranging <2.5 wt %) within a few of the individual dive transects (over distances of ~1 km) suggests that the mantle source composition evolved and magmatic temperatures persisted over timescales of tens of thousands of years. The high degree of chemical variability between pairs of adjacent dikes is interpreted as evidence for along-axis transport of magma from chemically distinct portions of the melt lens. Our findings suggest that lateral dike propagation occurs to a significant degree at superfast spreading centers.
Resumo:
This study on phosphorites of different compositions and ages from shelf sediments and seamounts of the Pacific Ocean by means of analytical electron microscopy showed that these phosphorites contain ultra-microscopic inclusions of authigenic minerals and, more rarely, of rare earth element (REE) minerals. In some of phosphorite samples of Pleistocene-Pliocene age from the Namibian shelf both kinds of minerals were found. Uranium minerals were represented by uraninite, coffinite, and ningioite; those of REE - by monazite, xenotime, and bastnesite, which points to their potential accumulation not only as isomorphous admixtures in calcium phosphate but also as independent mineral phases. Coexistence of the minerals noted in shelf phosphorites is caused by repeated changes in redox conditions during formation and then redeposition of phosphate concretions. Presence of uranium minerals in phosphorites from seamounts shows that during an initial step of formation of these phosphorites environment was rather suboxic or reductive than oxic.