671 resultados para concentration time


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We studied the concurrence of methanogenesis and sulfate reduction in surface sediments (0-25 cm below sea floor, cmbsf) at six stations (70, 145, 253, 407, 770 and 1024 m) along the Peruvian margin (12° S). This oceanographic region is characterized by high carbon export to the seafloor, creating an extensive oxygen minimum zone (OMZ) on the shelf, both factors that could favor surface methanogenesis. Sediments sampled along the depth transect traversed areas of anoxic and oxic conditions in the bottom-near water. Net methane production (batch incubations) and sulfate reduction (35S-sulfate radiotracer incubation) were determined in the upper 0-25 cmbsf of multicorer cores from all stations, while deep hydrogenotrophic methanogenesis (> 30 cmbsf, 14C-bicarbonate radiotracer incubation) was determined in two gravity cores at selected sites (78 and 407 m). Furthermore, stimulation (methanol addition) and inhibition (molybdate addition) experiments were carried out to investigate the relationship between sulfate reduction and methanogenesis. Highest rates of methanogenesis and sulfate reduction in the surface sediments, integrated over 0-25 cmbsf, were observed on the shelf (70-253 m, 0.06-0.1 and 0.5-4.7 mmol m-2 d-1, respectively), while lowest rates were discovered at the deepest site (1024 m, 0.03 and 0.2 mmol m-2 d-1, respectively). The addition of methanol resulted in significantly higher surface methanogenesis activity, suggesting that the process was mostly based on non-competitive substrates, i.e., substrates not used by sulfate reducers. In the deeper sediment horizons, where competition was probably relieved due to the decline of sulfate, the usage of competitive substrates was confirmed by the detection of hydrogenotrophic activity in the sulfate-depleted zone at the shallow shelf station (70 m). Surface methanogenesis appeared to be correlated to the availability of labile organic matter (C / N ratio) and organic carbon degradation (DIC production), both of which support the supply of methanogenic substrates. A negative correlation of methanogenesis rates with dissolved oxygen in the bottom-near water was not obvious, however, anoxic conditions within the OMZ might be advantageous for methanogenic organisms at the sediment-water interface. Our results revealed a high relevance of surface methanogenesis on the shelf, where the ratio between surface to deep (below sulfate penetration) methanogenic activity ranged between 0.13 and 105. In addition, methane concentration profiles indicate a partial release of surface methane into the water column as well as a partial consumption of methane by anaerobic methane oxidation (AOM) in the surface sediment. The present study suggests that surface methanogenesis might play a greater role in benthic methane budgeting than previously thought, especially for fueling AOM above the sulfate-methane transition zone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasing seawater temperature and CO2 concentrations both are expected to increase coastal phytoplankton biomass and carbon to nutrient ratios in nutrient limited seasonally stratified summer conditions. This is because temperature enhances phytoplankton growth while grazing is suggested to be reduced during such bottom-up controlled situations. In addition, enhanced CO2 concentrations potentially favor phytoplankton species, that otherwise depend on costly carbon concentrating mechanisms (CCM). The trophic consequences for consumers under such conditions, however, remain little understood. We set out to experimentally explore the combined effects of increasing temperature and CO2 concentration for phytoplankton biomass and stoichiometry and the consequences for trophic transfer (here for copepods) on a natural nutrient limited Baltic Sea summer plankton community. The results show, that warming effects were translated to the next trophic level by switching the system from a bottom-up controlled to a mainly top-down controlled one. This was reflected in significantly down-grazed phytoplankton and increased zooplankton abundance in the warm temperature treatment (22.5°C). Additionally, at low temperature (16.5°C) rising CO2 concentrations significantly increased phytoplankton biomass. The latter effect however, was due to direct negative impact of CO2 on copepod nauplii which released phytoplankton from grazing in the cold but not in the warm treatments. Our results suggest that future seawater warming has the potential to switch trophic relations between phytoplankton and their grazers under nutrient limited conditions with the consequence of potentially disguising CO2 effects on coastal phytoplankton biomass.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel laser microparticle detector used in conjunction with continuous sample melting has provided a more than 1500 m long record of particle concentration and size distribution of the NGRIP ice core, covering continuously the period approximately from 9.5-100 kyr before present; measurements were at 1.65 m depth resolution, corresponding to approximately 35-200 yr. Particle concentration increased by a factor of 100 in the Last Glacial Maximum (LGM) compared to the Preboreal, and sharp variations of concentration occurred synchronously with rapid changes in the delta18O temperature proxy. The lognormal mode µ of the volume distribution shows clear systematic variations with smaller modes during warmer climates and coarser modes during colder periods. We find µ ~ 1.7 µm diameter during LGM and µ ~ 1.3 µm during the Preboreal. On timescales below several 100 years µ and the particle concentration exhibit a certain degree of independence present especially during warm periods, when µ generally is more variable. Using highly simplifying considerations for atmospheric transport and deposition of particles we infer that (1) the observed changes of µ in the ice largely reflect changes in the size of airborne particles above the ice sheet and (2) changes of µ are indicative of changes in long range atmospheric transport time. From the observed size changes we estimate shorter transit times by roughly 25% during LGM compared to the Preboreal. The associated particle concentration increase from more efficient long range transport is estimated to less than one order of magnitude.