314 resultados para Weathering.
Resumo:
Within the framework of the Baikal Drilling Project (BDP), a 192 m long sediment core (BDP-96-1) was recovered from the Academician Ridge, a submerged topographic high between the North and Central Basins of Lake Baikal. Sedimentological, clay mineralogical and geochemical investigations were carried out on the core interval between 90 and 124 m depth, corresponding to ca. 2.4-3.4 Ma. The aim was to reconstruct the climatic and tectonic history of the continental region during the intensification of Northern Hemisphere glaciation in Late Pliocene time. A major climate change occurred in the Lake Baikal area at about 2.65 Ma. Enhanced physical weathering in the catchment, mirrored in the illite to smectite ratio, and temporarily reduced bioproduction in the lake, reflected by the diatom abundance, evidence a change towards a colder and more arid climate, probably associated with an intensification of the Siberian High. In addition, the coincident onset of distinct fluctuations in these parameters and in the Zr/Al ratio suggests the beginning of the Late Cenozoic high amplitude climate cycles at about 2.65 Ma. Fluctuations in the Zr/Al ratio are traced back to changes in the aeolian input, with high values in warmer, more humid phases due to a weaker Siberian High. Assuming that the sand content in the sediment reflects tectonic pulses, the Lake Baikal area was tectonically active during the entire investigated period, but in particular around 2.65 Ma. Tectonic movements have likely led to a gradual catchment change since about 3.15 Ma from the western towards the eastern lake surroundings, as indicated in the geochemistry and clay mineralogy of the sediments. The strong coincidence between tectonic and climatic changes in the Baikal area hints at the Himalayan uplift being one of the triggers for the Northern Hemisphere Glaciation.
Resumo:
Significant variations in the isotopic composition of marine calcium have occurred over the last 80 million years. These variations reflect deviations in the balance between inputs of calcium to the ocean from weathering and outputs due to carbonate sedimentation, processes that are important in controlling the concentration of carbon dioxide in the atmosphere and, hence, global climate. The calcium isotopic ratio of paleo-seawater is an indicator of past changes in atmospheric carbon dioxide when coupled with determinations of paleo-pH.
Resumo:
The neodymium (Nd) isotope composition of ancient seawater is a potentially useful tracer of changes in continental inputs and ocean circulation on timescales of a few ka. Here we present the first Nd isotope record for seawater using sedimentary foraminifera cleaned using standard oxidative-reductive techniques. The data, along with Mn/Ca ratios, suggest that cleaned foraminifera provide a reliable record of Nd in seawater and hold out the prospect of using Nd in foraminifera to examine changes in seawater that accompany glacial-interglacial climatic cycles. The principal potential problem to be overcome with the use of forams as records of trace elements in ancient seawater is their diagenetic Fe-Mn coatings. These contain large amounts of Nd and other trace elements but can be cleaned off using highly reducing reagents. Mn(Ca ratios for the majority of the cleaned sedimentary foraminifera analysed here lie within the range (10-100 µmol/mol) that has yielded success in studies of transition elements in forams. Mass-balance modelling suggests that for residual Mn/Ca ratios <100 µmol/mol, Nd added to the foram in the coating will never shift the measured Nd isotope composition significantly away from the seawater value acquired by the foram test in the water column. Additionally, Nd concentrations measured in cleaned sedimentary foraminifera are comparable with those for a modern sample that has never encountered diagenetic fluids. Finally, core-top planktonic foraminifera for two sites have Nd isotope compositions that are identical to local surface seawater. The data we present here for Labrador Sea forams over the past 2.5 m.y. are interpreted in terms of changes in the seawater isotopic composition. The data show a pronounced shift from epsilon-Nd values of ~-12 to ~-19 in the period 2.5-1.5 Ma. This change is interpreted to result from the initiation of Northern Hemisphere glaciation and the increased derivation of Labrador Sea Nd via ice-rafting from Archaean terranes in central Canada. In combination with stable isotope and foraminiferal relative species abundance data, the new Nd data are consistent with the surface hydrography of the Labrador Sea being dominated by a fluctuating balance between cold, polar waters containing unradiogenic Nd and warm, subtropical waters containing more radiogenic Nd. The major change in Labrador Sea Nd that is observed in the past 2.5 Ma can, on its own, account for the change in the Nd isotope composition of North Atlantic Deep Water over the same time period.
Resumo:
Hess Rise, in the western Pacific Ocean, formed in the mid-Cretaceous south of the equator and moved north with the Pacific Plate (Lancelot and Larson, 1975; Lancelot, 1978; Valuer et al., 1979). Southern Hess Rise was a volcanic archipelago, at least until late Albian time, after which it subsided to become one of the major aseismic rises in the present western Pacific. A second pulse of volcanic activity apparently occurred in the Campanian-Maastrichtian interval, which may be related to tectonic uplift of Hess Rise (Valuer and Jefferson, this volume). Trachytic rocks underlie 412 meters of carbonate sediments at Site 465 on southern Hess Rise. Twenty-four meters of trachyte were recovered from a 64-meter cored interval. The rocks are relatively homogeneous in texture, color, and composition, indicating that the cored sequence was probably part of only one magmatic event (Seifert et al., this volume). Large (> 5-mm) vesicles and oxidized parts of some flows suggest subaerial or shallow-water extrusions. The rocks are high in silica and relatively rich in Na2O, K2O, and light rare-earth elements. The upper part of the volcanic-rock sequence is a breccia, the fragments cemented by calcite, pyrite, and rare barite. Some of the resultant veins are more than 1 cm thick. In addition to the veins, many vesicles are also filled with these minerals. Brecciation and the number and thickness of veins decrease with depth in the hole. The degree of weathering, as indicated by water content, also decreases with depth.
Resumo:
Re and Os concentrations and Os isotopic ratios were determined for composite samples prepared from volcanoclastics (VCL) and basaltic flows (FLO) from Jurassic oceanic crust (Ocean Drilling Program Leg 185, Site 801 in the western Pacific), with the aim of determining the effect of seafloor weathering on the Re-Os budget. A supercomposite sample, prepared from a proportionate mixture of the various composite powders, served to represent the average composition of the altered oceanic crust [Kelley, K.A., Plank, T., Ludden, J. and Staudigel, H., (2003). Composition of altered oceanic crust at ODP Sites 801 and 1149, Geochem. Geophys. Geosyst. 4(6) 8910, doi:10.1029/2002GC000435.]. Re contents vary from 0.2 to 1.3 ng/g, and from 2.2 to 3.1 ng/g in the VCL and FLO composites respectively. Os contents vary from 0.005 to 0.047 ng/g in the VCL, and from 0.008 to 0.027 ng/g in the FLO composites. The FLO composites have much higher Re/Os ratios and thus have more radiogenic Os compositions (187Os/188Os = 1.38 to 8.48) than the VCL composites (187Os/188Os = 0.32 to 4.40). The VCL composite from the upper section of the crust shows evidence for substantial Re loss and Os uptake, consistent with oxidative weathering processes. However, Re uptake during weathering processes under more reducing conditions, evident in the FLO samples from throughout the section and to a lesser extent in the lower VCL samples, more than compensates for this Re loss in the upper VCL. Os concentrations were essentially unchanged by these reductive processes. Model age calculations suggest that Re uptake continued for tens of millions of years after crust formation. Abundant secondary pyrite is found throughout the altered Hole 801C crust in zones of restricted seawater flow, and this may have accommodated an important part of the input Re. The Re content of the supercomposite (~2.2 ng/g) is about 1 ng/g higher than would be expected on the basis of its Yb content. If the results from Hole 801C are typical, they suggest that the Re concentration of at least the upper part of the oceanic crust may be nearly doubled during seafloor alteration. Such large extents of Re uptake would have a significant effect on the oceanic Re budget. Furthermore, assuming that they survive passage through the subduction zone, these elevated Re contents would greatly decrease the proportion of subducted oceanic crust required in the source region to explain the radiogenic Os compositions of many ocean island basalts.