283 resultados para Volcanic ash, tuff, etc.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A biostratigraphically complete Cretaceous/Tertiary boundary was recovered during Ocean Drilling Program Leg 121. The boundary, cored in ODP Hole 752B on Broken Ridge, is the most expanded deep-sea section yet recovered by ODP/DSDP. The initial Danian subzone, CP la, spans nearly 5 m and the underlying uppermost Maestrichtian Nephrolithus frequens Zone extends 50 m below the boundary. The paleolatitude of Broken Ridge at Cretaceous/Tertiary time is estimated at 50°-55°S which includes this site among the latest in a series of complete or near complete high southern latitude Cretaceous/Tertiary boundary sections recovered by ODP (Leg 113 Site 690 and Leg 119 Site 738). The boundary at Site 752 lies at the base of a thick (6-6.5 m) volcanic ash unit composed of multiple ash layers which overlies indurated Maestrichtian chalks. Magnetostratigraphy indicates that the boundary lies within Subchron 29R, which is the case for all other known complete sections for which the polarity has been determined. Anomalous abundances of the trace element iridium are present at the boundary. A second iridium peak, 80 cm above the boundary, corresponds to an increase in redeposited Cretaceous nannofossils. The nannofossil succession is similar to that found at previously studied austral high-latitude ODP drill sites with few differences due to the more northerly location of this site. Individual nannofossil species were counted and placed into three categories. A plot of the percent abundance of Cretaceous, Tertiary, and 'survivor' groups illustrates the rapid replacement of the Cretaceous nannoflora by 'survivor' forms beginning at the boundary and the dominance of this latter group through the initial Danian biozone. This 'survivor' or opportunistic assemblage is then rapidly replaced by newly evolved Tertiary taxa. The assemblage of the uppermost Maestrichtian is biased toward dissolution-resistant forms such as Micula decussata. In those few intervals where preservation is good, the dissolution susceptible species, Prediscosphaera stoveri, is more prevalent and overall diversity of the assemblage is higher. The 'survivor' assemblage is dominated by Zygodiscus sigmoides and Thoracosphaera. The Tertiary assemblage consists of rare Biantholithus sparsus, the first of this group to appear. It is followed several meters upsection by Cruciplacolithus primus. Cruciplacolithus tenuis and small Prinsius spp. dominate the assemblage beginning at about 5 m above the boundary.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drill core recovered at Ocean Drilling Program Site 808 (Leg 131) proves that the wedge of trench sediment within the central region of the Nankai Trough comprises approximately 600 m of hemipelagic mud, sandy turbidites, and silty turbidites. The stratigraphic succession thickens and coarsens upward, with hemipelagic muds and volcanic-ash layers of the Shikoku Basin overlain by silty and sandy trench-wedge deposits. Past investigations of clay mineralogy and sand petrography within this region have led to the hypothesis that most of the detritus in the Nankai Trough was derived from the Izu-Honshu collision zone and transported southwestward via axial turbidity currents. Shipboard analyses of paleocurrent indicators, on the other hand, show that most of the ripple cross-laminae within silty turbidites of the outer marginal trench-wedge facies are inclined to the north and northwest; thus, many of the turbidity currents reflected off the seaward slope of the trench rather than moving straight down the trench axis. Shore-based analyses of detrital clay minerals demonstrate that the hemipelagic muds and matrix materials within sandy and silty turbidites are all enriched in illite; chlorite is the second-most abundant clay mineral, followed by smectite. In general, the relative mineral percentages change relatively little as a function of depth, and the hemipelagic clay-mineral population is virtually identical to the turbidite-matrix population. Comparisons between different size fractions (<2 µm and 2-6 µm) show modest amounts of mineral partitioning, with chlorite content increasing in the coarser fraction and smectite increasing in the finer fraction. Values of illite crystallinity index are consistent with conditions of advanced anchimetamorphism and epimetamorphism within the source region. Of the three mica polytypes detected, the 2M1 variety dominates over the 1M and 1Md polytypes; these data are consistent with values of illite crystallinity. Measurements of mica bo lattice spacing show that the detrital illite particles were eroded from a zone of intermediate-pressure metamorphism. Collectively, these data provide an excellent match with the lithologic and metamorphic character of the Izu-Honshu collision zone. Data from Leg 131, therefore, confirm the earlier interpretations of detrital provenance. The regional pattern of sediment dispersal is dominated by a combination of southwest-directed axial turbidity currents, radial expansion of the axial flows, oblique movement of suspended clouds onto and beyond the seaward slope of the Nankai Trough, and flow reflection back toward the trench axis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An investigation of stable isotope (d13C TOC and d15N TN) and elemental parameters (TOC, TN contents and TOC/TN ratios) of bulk organic matter (<200 µm) from sediment cores recovered from the Patagonian lake Laguna Potrok Aike (Argentina) in the framework of the ICDP deep drilling project PASADO provided insights into past changes in lake primary productivity and environmental conditions in South Patagonia throughout the last Glacial-Interglacial transition. Stratigraphically constrained cluster analyses of all proxy parameters suggest four main phases. From ca 26,100 to 17,300 cal. years BP, lacustrine phytoplankton was presumably the predominant organic matter source in an aquatic environment with low primary productivity rates. At around 17,300 cal. years BP, abrupt and distinct shifts of isotopic and elemental values indicate that the lacustrine system underwent a rapid reorganization. Lake primary productivity (phytoplankton and aquatic macrophytes) shows higher levels albeit with large variations during most of the deglaciation until 13,000 cal. years BP. The main causes for this development can be seen in improved growing conditions for primary producers because of deglacial warming in combination with expedient availability of nutrients and likely calm wind conditions. After 13,000 cal. years BP, decreased d13C TOC values, TOC, TN contents and TOC/TN ratios indicate that the lake approached a new state with reduced primary productivity probably induced by unfavourable growing conditions for primary producers like strengthened winds and reduced nutrient availability. The steady increase in d15N TN values presumably suggests limitation of nitrate supply for growth of primary producers resulting from a nutrient shortage after the preceding phase with high productivity. Nitrate limitation and consequent decreased lacustrine primary productivity continued into the early Holocene (10,970-8400 cal. years BP) as reflected by isotopic and elemental values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distribution of diatoms, radiolarians, planktonic and benthic foraminifers, and sediment components in fraction >0.125 mm was analyzed in a core obtained from the central Sea of Okhotsk within frameworks of the Russian-German KOMEX Project. The core section characterizes the period 190-350 ka, which corresponds to marine-isotopic stages (MIS) 7 to 10. During glacial MIS 10 and MIS 8, the basin accumulated terrigenous material lacking microfossils or containing them in low abundance, which reflects, along with their composition, heavy sea-ice conditions, suppressed bioproductivity, and bottom environment aggressive toward calcium carbonate. Interglacial MIS 9 was characterized by elevated bioproductivity with accumulation of diatomaceous ooze during the climatic optimum (328 to 320 ka). Water exchange with the Pacific was maximal from 328 to 324 ka ago. Environment became moderate and close to the present-day one at the end of the optimum exhibiting possible existence of a dichothermal layer with substantial amounts of surface Pacific water still flowing into the basin. Similar to interglacial MIS 5e and MIS 1, ''old'' Pacific water determined near-bottom environment in the central Sea of Okhotsk during that period, although influx of terrigenous material was higher, probably reflecting more humid climate of the region. Slight warming marked the terminal MIS 8 (approximately 260 ka ago). Paleoceanographic situation during the interglacial MIS 7 was highly variable: from warm-water to almost glacial. The main climatic optimum of MIS 7 occurred within 220-210 ka, when subsurface stratification increased and the dichothermal layer developed. Bottom environment during the studied time interval, except for the optimum of interglacial MIS 9, resembled those characteristic of glacial periods: actively formed ''young'' Okhotsk water displaced ''old'' Pacific deep water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three megascopic and disseminated tephra layers (which we refer to as layers A, B, and C) occur in late Quaternary glaciomarine sediments deposited on the West Antarctic continental margin. The stratigraphical positions of the distal tephra layers in 28 of the 32 studied sediment cores suggest their deposition during latest Marine Isotopic Stage (MIS) 6 and MIS 5. One prominent tephra layer (layer B), which was deposited subsequent to the penultimate deglaciation (Termination II), is present in almost all of the cores. Geochemical analyses carried out on the glass shards of the layers reveal a uniform trachytic composition and indicate Marie Byrd Land (MBL), West Antarctica, as the common volcanic source. The geochemical composition of the marine tephra is compared to that of ash layers of similar age described from Mount Moulton and Mount Takahe in MBL and from ice cores drilled at Dome Fuji, Vostok and EPICA Dome C in East Antarctica. The three tephra layers in the marine sediments are chemically indistinguishable. Also five englacial ash layers from Mt. Moulton, which originated from highly explosive Plinian eruptions of the Mt. Berlin volcano in MBL between 142 ka and 92 ka ago, are chemically very similar, as are two tephra layers erupted from Mt. Takahe at ca. 102 ka and ca. 93 ka. Statistical analysis of the chemical composition of the glass shards indicates that the youngest tephra (layer A) in the marine cores matches the ash layer erupted from Mt. Berlin at 92 ka, which was previously correlated with tephra layers in the EPICA Dome C and the Dome Fuji ice cores. A tephra erupted from Mt. Berlin at 136 ka seems to correspond to a tephra layer deposited at 1733 m in the EPICA Dome C ice core. Additionally, the oldest tephra (layer C) in the marine sediments resembles an ash layer deposited at Vostok around 142 ka, but statistical evidence for the validity of this correlation is inconclusive. Although our results underscore the potential of tephrostratigraphy for correlating terrestrial and marine palaeoclimate archives, our study also reveals limitations of this technique, which may result in the miscorrelation of tephra. Such pitfalls comprise failure to recognise the occurrence of various tephra layers in marine sediment cores, 'swamping' of records with chemically indistinguishable tephra from a single volcanic source, and exclusive use of 'geochemical fingerprinting' for correlating ash layers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On the basis of various lithological, mircopaleontological and isotopic proxy records covering the last 30,000 calendar years (cal kyr) the paleoenvironmental evolution of the deep and surface water circulation in the subarctic Nordic seas was reconstructed for a climate interval characterized by intensive ice-sheet growth and subsequent decay on the surrounding land masses. The data reveal considerable temporal changes in the type of thermohaline circulation. Open-water convection prevailed in the early record, providing moisture for the Fennoscandian-Barents ice sheets to grow until they reached the shelf break at ~26 cal. kyr and started to deliver high amounts of ice-rafted debris (IRD) into the ocean via melting icebergs. Low epibenthic delta18O values and small-sized subpolar foraminifera observed after 26 cal. kyr may implicate that advection of Atlantic water into the Nordic seas occurred at the subsurface until 15 cal. kyr. Although modern-like surface and deep-water conditions first developed at ~13.5 cal. kyr, thermohaline circulation remained unstable, switching between a subsurface and surface advection of Atlantic water until 10 cal. kyr when IRD deposition and major input of meltwater ceased. During this time, two depletions in epibenthic delta13C are recognized just before and after the Younger Dryas indicating a notable reduction in convectional processes. Despite an intermittent cooling at ~8 cal. kyr, warmest surface conditions existed in the central Nordic seas between 10 and 6 cal. kyr. However, already after 7 cal. kyr the present day situation gradually evolved, verified by a strong water mass exchange with the Arctic Ocean and an intensifying deep convection as well as surface temperature decrease in the central Nordic seas. This process led to the development of the modern distribution of water masses and associated oceanographic fronts after 5 cal. kyr and, eventually, to today's steep east-west surface temperature gradient. The time discrepancy between intensive vertical convection after 5 cal. kyr but warmest surface temperatures already between 10 and 6 cal. kyr strongly implicates that widespread postglacial surface warming in the Nordic seas was not directly linked to the rates in deep-water formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pore-water samples were recovered at five sites from ODP Leg 114 in the subantarctic South Atlantic Ocean and analyzed for pH, alkalinity, chloride, sulfate, fluoride, silica, magnesium, calcium, strontium, potassium, lithium, and barium. At sites in the East Georgia Basin and on the Islas Orcadas Rise, Ca increases and Mg decreases linearly downhole with a DeltaMg/DeltaCa ratio reflecting conservative diffusive exchange and basalt basement reactions. At sites on the west flank of the Mid-Atlantic Ridge and on the Meteor Rise, Ca gradients are nonlinear, and nonconservative DeltaMg/DeltaCa ratios reflect alteration reactions of abundant silicic volcanic ash in the sediment. K decreases linearly downhole at all sites, reflecting uptake by basement and the absence of significant sediment-hosted reactions. SO4 decreases and alkalinity increases downhole are due to a slight sulfate reduction at all sites except at Site 701. Sr increases downhole at all sites except Site 701, with DeltaSr/DeltaCa ratios reflecting diffusive exchange with basement. At Site 704 on the Meteor Rise, there is intense Sr production during carbonate recrystallization in the upper 200 mbsf. Below 200 mbsf at Site 704, the ion concentration product of SrSO4 is constant, suggesting Sr control by celestite solubility. Li and F concentrations display complex behavior related to sedimentary reactions, probably calcite recrystallization (Li uptake and F release).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A University of Hawaii oceanographic cruise, Abyssal Hills 69, with the R/V Mahi, was carried out to study the association of manganese nodules with an abyssal hill. Manganese nodules from three dredge hauls on an abyssal hill located at 36°W and 157°W exhibited differences in morphology and composition between stations only three miles apart. The morphology of the nodules suggests that nodules from a single site have similar morphologies because they began growth at the same time, probably because of a volcanic event. Differences in morphology between stations indicate a local supply of elements. Atomic absorption analysis for manganese, iron, cobalt, nickel, and copper revealed that nodules nearest to a probable fault line and source of volcanism have a, lower manganese to iron ratio than nodules farther removed. This finding supports the theory that volcanism contributes to the formation of some nodules. Additional evidence showing association with volcanism consists of volcanic nuclei in nodules, crusts formed on layers of volcanic ash, and basalt encrusted to various degrees. The variation in cobalt, nickel, and copper contents Gt the nodules from a single dredge is two-to threefold, but iron content is more uniiorm. Four of the six cores from the area increased in manganese concentration with depth, suggesting that diffusion is concentrating manganese in the upper zone of the sediments or in nodules. The author concludes that volcanism is contributing to the formation of nodules by supplying nuclei and transition elements, but is not necessary for the formation of manganese nodules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eolian dust is a significant source of iron and other nutrients that are essential for the health of marine ecosystems and potentially a controlling factor of the high nutrient-low chlorophyll status of the Subarctic North Pacific. We map the spatial distribution of dust input using three different geochemical tracers of eolian dust, 4He, 232Th and rare earth elements, in combination with grain size distribution data, from a set of core-top sediments covering the entire Subarctic North Pacific. Using the suite of geochemical proxies to fingerprint different lithogenic components, we deconvolve eolian dust input from other lithogenic inputs such as volcanic ash, ice-rafted debris, riverine and hemipelagic input. While the open ocean sites far away from the volcanic arcs are dominantly composed of pure eolian dust, lithogenic components other than eolian dust play a more crucial role along the arcs. In sites dominated by dust, eolian dust input appears to be characterized by a nearly uniform grain size mode at ~4 µm. Applying the 230Th-normalization technique, our proxies yield a consistent pattern of uniform dust fluxes of 1-2 g/m**2/yr across the Subarctic North Pacific. Elevated eolian dust fluxes of 2-4 g/m**2/yr characterize the westernmost region off Japan and the southern Kurile Islands south of 45° N and west of 165° E along the main pathway of the westerly winds. The core-top based dust flux reconstruction is consistent with recent estimates based on dissolved thorium isotope concentrations in seawater from the Subarctic North Pacific. The dust flux pattern compares well with state-of-the-art dust model predictions in the western and central Subarctic North Pacific, but we find that dust fluxes are higher than modeled fluxes by 0.5-1 g/m**2/yr in the northwest, northeast and eastern Subarctic North Pacific. Our results provide an important benchmark for biogeochemical models and a robust approach for downcore studies testing dust-induced iron fertilization of past changes in biological productivity in the Subarctic North Pacific.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leg 165 of the Ocean Drilling Program afforded a unique opportunity to investigate organic and inorganic geochemistry across a wide gradient of sediment compositions and corresponding chemical pathways. The solid fractions at Sites 998, 999, 1000, and 1001 reveal varying proportions of reactive carbonate species, a labile volcanic ash fraction occurring in discrete layers and as a dispersed component, and detrital fluxes that derive from continental weathering. The relative proportions and reactivities of these end-members strongly dictate the character of the diagenetic profiles observed during the pore-water work of Leg 165. In addition, alteration of the well-characterized basaltic basement at Site 1001 has provided a strong signal that is reflected in many of the dissolved components. The relative effects of basement alteration and diagenesis within the sediment column are discussed in terms of downcore relationships for dissolved calcium and magnesium. With the exception of Site 1002 in the Cariaco Basin, the sediments encountered during Leg 165 were uniformly deficient in organic carbon (typically <0.1 wt%). Consequently, rates of organic oxidation were generally low and dominated by suboxic pathways with subordinate levels of bacterial sulfate reduction and methanogenesis. The low rates of organic remineralization are supported by modeled rates of sulfate reduction. Site 1000 provided an exception to the generally low levels of microbially mediated redox cycling. At this site the sediment is slightly more enriched in organic phases, and externally derived thermogenic hydrocarbons appear to aid in driving enhanced levels of redox diagenesis at great depths below the seafloor. The entrapment of these volatiles corresponds with a permeability seal defined by a pronounced Miocene minimum in calcium carbonate concentration recognized throughout the basin and with a dramatic downcore increase in the magnitude of limestone lithification. The latter has been tentatively linked to increases in alkalinity associated with microbial oxidation of organic matter and gaseous hydrocarbons. Recognition and quantification of previously unconstrained large volumes and frequencies of Eocene and Miocene silicic volcanic ash within the Caribbean Basin is one of the major findings of Leg 165. High frequencies of volcanic ash layers manifest as varied but often dominant controls on pore-water chemistry. Sulfur isotope results are presented that speak to secondary metal and sulfur enrichments observed in ash layers sampled during Leg 165. Ultimately, a better mechanistic understanding of these processes and the extent to which they have varied spatially and temporally may bear on the global mass balances for a range of major and minor dissolved components of seawater.