977 resultados para Spitsbergen


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study was carried out from April 30 until July 13 of 1997 in Adventfjorden (Spitsbergen). Formation of a less saline and warmer surface water (~1 m thick) caused by melting of the ice was observed in the fjord during the first days of May. In summer the less saline surface layer was about 3 m thick. Euphotic depth measured under the ice sheet reached 12 m, whereas load of mineral matter brought with riverine discharge in summer (content of total particulate matter in the fjord reached 1.66 kg/m**2) dramatically reduced euphotic zone depth to 0.35 m. By pigment measurement three phases of phytoplankton development in Adventfjorden were distinguished: (1) spring bloom that has started under fast ice and reached maximum in the mid of May, (2) stagnation period in June, (3) increase of pigment concentration in July, what could indicate start of the next algae bloom. Analyses of chlorophylls and carotenoids revealed that diatoms (chl c, fucoxanthin), and green algae (chl b, lutein) dominated phytoplankton community in the fjord. Moreover, presence of peridinin indicates presence of Dinophyta and alloxanthin - occurence of Cryptophyta. In May and June 1997 phytoplankton appeared mainly in the surface of water, while in July, as a result of inflow of turbulent riverine waters into Adventfjorden, algae cells were pushed down and the highest numbers were observed at depth ~20 m. Great phaeopigments to chl a ratio (= 0.54) found in fjord seston in June and July probably shows strong impact of zooplankton grazing on phytoplankton development. High contribution of chlorophyllide a in porphyrin a poll in samples collected under fast ice (chlorophyllide a / chl a ratio = 0.18) reflects the final stage of algal communitie succession in ice, just before spring ice melt and release of biota to oceanic water. Chlorophyllide a content during summer was minor or not detectable, demonstrating that diatom cells were in good physiological condition. High chl a allomer / chl a ratio (average = 0.11 for the period investigated) confirms high oxygen concentration in environment of Adventfjorden.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A comparative study on the lipid composition of the liver and muscles has been performed in daubed shanny caught in summer (July) in Arctic waters at three different sites (biotopes) along the north-western coast of Spitsbergen. In marine organisms living at high latitudes, lipids play an especially important role, primarily as reserve substances and as a factor influencing adaptation to severe environmental conditions. Since the ecology of daubed shanny is poorly known, the data obtained may be considered novel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The deglaciation of the continental shelf to the west of Spitsbergen and the main fjord, Isfjorden, is discussed based on sub-bottom seismic records and sediment cores. The sea floor on the shelf to the west of Isfjorden is underlain by less than 2 m of glaciomarine sediments over a firm diamicton interpreted as till. In central Isfjorden up to 10 m of deglaciation sediments were recorded, whereas in cores from the innermost tributary, Billefjorden, less than a meter of ice proximal sediments was recognized between the till and the 'normal' Holocene marine sediments. We conclude that the Barents Sea Ice Sheet terminated along the shelf break during the Late Weichselian glacial maximum. Radiocarbon dates from the glaciomarine sediments above the till indicate a stepwise deglaciation. Apparently the ice front retreated from the outermost shelf around 14.8 ka. A dramatic increase in the flux of line-grained glaciomarine sediments around 13 ka is assumed to reflect increased melting and/or current activity due to a climatic warming. This second stage of deglaciation was interrupted by a glacial readvance culminating on the mid-shelf area shortly after 12.4 ka. The glacial readvance, which is correlated with a simultaneous readvance of the Fennoscandian ice sheet along the western coast of Norway, is attributed to the so-called 'Older Dryas' cooling event in the North Atlantic region. Following this glacial readvance the outer part of Isfjorden became rapidly deglaciated around 12.3 ka. During the Younger Dryas the inner fjord branches were occupied by large outlet glaciers and possibly the ice front terminated far out in the main fjord. The remnants of the Barents Sea Ice Sheet melted quickly away as a response to the Holocene warming around 10 ka.