262 resultados para Soft sediment ecology


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Species distribution patterns in planktonic foraminiferal assemblages are fundamental to the understanding of the determinants of their ecology. Until now, data used to identify such distribution patterns was mainly acquired using the standard >150 µm sieve size. However, given that assemblage shell size-range in planktonic foraminifera is not constant, this data acquisition practice could introduce artefacts in the distributional data. Here, we investigated the link between assemblage shell size-range and diversity in Recent planktonic foraminifera by analysing multiple sieve-size fractions in 12 samples spanning all bioprovinces of the Atlantic Ocean. Using five diversity indices covering various aspects of community structure, we found that counts from the >63 µm fraction in polar oceans and the >125 µm elsewhere sufficiently approximate maximum diversity in all Recent assemblages. Diversity values based on counts from the >150 µm fraction significantly underestimate maximum diversity in the polar and surprisingly also in the tropical provinces. Although the new methodology changes the shape of the diversity/sea-surface temperature (SST) relationship, its strength appears unaffected. Our analysis reveals that increasing diversity in planktonic foraminiferal assemblages is coupled with a progressive addition of larger species that have distinct, offset shell-size distributions. Thus, the previously documented increase in overall assemblage shell size-range towards lower latitudes is linked to an expanding shell-size disparity between species from the same locality. This observation supports the idea that diversity and shell size-range disparity in foraminiferal assemblages are the result of niche separation. Increasing SST leads to enhanced surface water stratification and results in vertical niche separation, which permits ecological specialisation. Specific deviations from the overall diversity and shell-size disparity latitudinal pattern are seen in regions of surface-water instability, indicating that coupled shell-size and diversity measurements could be used to reconstruct water column structures of past oceans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ecological and taxonomic study of the mollusk-rich fauna of the Golfe d'Arguin, North Mauritania, investigates the various environmental influences affecting this tropical shelf. The upwelling of nutrient-rich waters leads to a highly productive environment under tropical conditions. The resulting mixed carbonate-siliciclastic sediment contains a large portion of calcareous components produced by heterotrophic organisms-e.g., mollusks, foraminifers, worms, barnacles-that are reworked on the open shelf. On the basis of mollusk assemblages, six taphocoenoses are defined, all being characterized by a mixed fauna of tropical (e.g., Tellina densestriata), subtropical (e.g., Macoma cumana) and temperate (e.g., Spisula subtruncata) species. Differences between the assemblages are related to the medium-grain size ranging from mud to gravel-that results from local hydrodynamic conditions and water depth. Among carbonate grains, Donax burnupi shells are very abundant in the swell-exposed, northern part of the Golfe d'Arguin and reflect the tropical to subtropical, high-energy, and high-nutrient waters. Mollusk assemblages are demonstrated to be a sensitive tool for deciphering complex environmental conditions in sedimentary archives.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Leg 90 recovered approximately 3705 m of core at eight sites lying at middle bathyal depths (1000-2200 m) (Sites 587 to 594) in a traverse from subtropical to subantarctic latitudes in the southwest Pacific region, chiefly on Lord Howe Rise in the Tasman Sea. This chapter summarizes some preliminary lithostratigraphic results of the leg and includes data from Site 586, drilled during DSDP Leg 89 on the Ontong-Java Plateau that forms the northern equatorial point of the latitudinal traverse. The lithofacies consist almost exclusively of continuous sections of very pure (>95% CaCO3) pelagic calcareous sediment, typically foraminifer-bearing nannofossil ooze (or chalk) and nannofossil ooze (or chalk), which is mainly of Neogene age but extends back into the Eocene at Sites 588, 592, and 593. Only at Site 594 off southeastern New Zealand is there local development of hemipelagic sediments and several late Neogene unconformities. Increased contents of foraminifers in Leg 90 sediments, notably in the Quaternary interval, correspond to periods of enhanced winnowing by bottom currents. Significant changes in the rates of sediment accumulation and in the character and intensity of sediment bioturbation within and between sites probably reflect changes in calcareous biogenic productivity as a result of fundamental paleoceanographic events in the region during the Neogene. Burial lithification is expressed by a decrease in sediment porosity from about 70 to 45% with depth. Concomitantly, microfossil preservation slowly deteriorates as a result of selective dissolution or recrystallization of some skeletons and the progressive appearance of secondary calcite overgrowths, first about discoasters and sphenoliths, and ultimately on portions of coccoliths. The ooze/chalk transition occurs at about 270 m sub-bottom depth at each of the northern sites (Sites 586 to 592) but is delayed until about twice this depth at the two southern sites (Sites 593 and 594). A possible explanation for this difference between geographic areas is the paucity of discoasters and sphenoliths at the southern sites; these nannofossil elements provide ideal nucleation sites for calcite overgrowths. Toward the bottom of some holes, dissolution seams and flasers appear in recrystallized chalks. The very minor terrigenous fraction of the sediment consists of silt- through clay-sized quartz, feldspar, mica, and clay minerals (smectite, illite, kaolinite, and chlorite), supplied as eolian dust from the Australian continent and by wind and ocean currents from erosion on South Island, New Zealand. Changes in the mass accumulation rates of terrigenous sediment and in clay mineral assemblages through time are related to various external controls, such as the continued northward drift of the Indo-Australian Plate, the development of Antarctic ice sheets, the increased desertification of the Australian continent after 14 m.y. ago, and the progressive increase in tectonic relief of New Zealand through the late Cenozoic. Disseminated glass shards and (altered) tephra layers occur in Leg 90 cores. They were derived from major silicic eruptions in North Island, New Zealand, and from basic to intermediate explosive volcanism along the Melanesian island chains. The tephrostratigraphic record suggests episodes of increased volcanicity in the southwest Pacific centered near 17, 13, 10, 5 and 1 m.y. ago, especially in the middle and early late Miocene. In addition, submarine basaltic volcanism was widespread in the southeast Tasman Sea around the Eocene/Oligocene boundary, possibly related to the propagation of the Southeast Indian Ridge through western New Zealand as a continental rift system.