249 resultados para Sand, Foundry.
Resumo:
The interval between 488.2 and 513.7 m below seafloor at Deep Sea Drilling Project (DSDP) Site 615 is interpreted as a single carbonate gravity-flow deposit. The deposit has characteristics of both a debris flow and a high-density turbidity current. Comparison of the sedimentary constituents in 15 samples from this site with samples from 26 core tops from the upper West Florida continental slope and eastern Mississippi Fan shows many similarities. Shallow-water indicators, such as mollusk and echinoid fragments, occur in both suites of samples. The West Florida continental margin, therefore, is a potential provenance area. The Yucatan slope is also a possible source, but data from it are limited. The recognition of carbonate gravity-flow deposits intercalated within the Mississippi Fan refines our understanding of Pleistocene sedimentation within the Gulf basin. Deposition in the deep Gulf is dominated by the construction of the Mississippi Fan. However, this marine terrigenous depocenter is located between two large carbonate depocenters, the West Florida continental margin on the east and the Yucatan peninsula on the southwest. Periodically, the carbonate slope in these two regions fails, injecting carbonate gravity flows into the accreting terrigenous deep-sea fan.
Resumo:
Seriocarpa rhizoides Diehl 1969 was collected in abundance from the calcareous sand of the Josephine Bank (between Portugal and Madeira) during the "Meteor" seamount cruises in 1967. Attachment in this loose soft substratum is effected by fine anchoring strands of the tests. Two irregular series of small polycarp-like hermaphrodite bodies which are embedded in a connective tissue lie directly below the endostyle, forming a tubular compound gonad, but without common ducts. The intermediate nature of the reproductive system with respect to arrangement and structure increases our knowledge about the polygenetic relations of the stylid-genera. Some of the hitherto known ecological facts point to the presumed "seamounts effect" on this species.
Resumo:
At mid- to high-latitude marine sites, ice-rafted debris (IRD) is commonly recognized as anomalously coarse-grained terrigenous material contained within a fine-grained hemipelagic or pelagic matrix (e.g., Conolly and Ewing, 1970; Ruddiman, 1977, doi:10.1130/0016-7606(1977)88<1813:LQDOIS>2.0.CO;2; Krissek, 1989, doi:10.2973/odp.proc.sr.104.114.1989; Jansen et al., 1990; Bond et al., doi:10.1038/360245a0, 1992; Krissek, 1995, doi:10.2973/odp.proc.sr.145.118.1995). The presence of such ice-rafted material is a valuable indicator of the presence of glacial ice at sea level on an adjacent continent, whereas the composition of the IRD can often be used to identify the location of the source area (e.g., Goldschmidt, 1995, doi:10.1016/0025-3227(95)00098-J). Because the amount of core recovered during Leg 163 was very limited, this shore-based, postcruise study focuses on materials recovered at a nearby site during Leg 152. In particular, this study examines sediments recovered at Site 919; these sediments were described as containing a significant ice-rafted component in the Leg 152 Initial Reports volume (Larsen, Saunders, Clift, et al., 1994, doi:10.2973/odp.proc.ir.152.1994). In this study, the sedimentary section from Site 919 has been examined with the goal of providing a detailed history of glaciations on Greenland and other landmasses adjacent to the Norwegian-Greenland Sea; this history ultimately will be calibrated using an oxygen isotope stratigraphy (Flower, 1998, doi:10.2973/odp.proc.sr.152.219.1998), although that calibration has not been completed at this time. Because ice-core studies of the Greenland Ice Sheet (GIS) have shown that the GIS changed dramatically, and in some cases extremely rapidly, during at least the last interglacial stage (GRIP Members, 1993, doi:10.1038/364203a0), a detailed IRD record from the Southeast Greenland margin should provide insight into the longer term behavior of this sensitive component of the Northern Hemisphere climate system.
Resumo:
Distribution of diatoms, radiolarians, planktonic and benthic foraminifers, and sediment components in fraction >0.125 mm was analyzed in a core obtained from the central Sea of Okhotsk within frameworks of the Russian-German KOMEX Project. The core section characterizes the period 190-350 ka, which corresponds to marine-isotopic stages (MIS) 7 to 10. During glacial MIS 10 and MIS 8, the basin accumulated terrigenous material lacking microfossils or containing them in low abundance, which reflects, along with their composition, heavy sea-ice conditions, suppressed bioproductivity, and bottom environment aggressive toward calcium carbonate. Interglacial MIS 9 was characterized by elevated bioproductivity with accumulation of diatomaceous ooze during the climatic optimum (328 to 320 ka). Water exchange with the Pacific was maximal from 328 to 324 ka ago. Environment became moderate and close to the present-day one at the end of the optimum exhibiting possible existence of a dichothermal layer with substantial amounts of surface Pacific water still flowing into the basin. Similar to interglacial MIS 5e and MIS 1, ''old'' Pacific water determined near-bottom environment in the central Sea of Okhotsk during that period, although influx of terrigenous material was higher, probably reflecting more humid climate of the region. Slight warming marked the terminal MIS 8 (approximately 260 ka ago). Paleoceanographic situation during the interglacial MIS 7 was highly variable: from warm-water to almost glacial. The main climatic optimum of MIS 7 occurred within 220-210 ka, when subsurface stratification increased and the dichothermal layer developed. Bottom environment during the studied time interval, except for the optimum of interglacial MIS 9, resembled those characteristic of glacial periods: actively formed ''young'' Okhotsk water displaced ''old'' Pacific deep water.
Resumo:
Detrital modes determined on 68 sandstone samples from CRP-3 drillcore indicate a continuation of the dynamic history of uplift-related erosion and unroofing previously documented in CRP-1 and CRP-2/2A. The source area is identified very strongly with the Transantarctic Mountains (TAM) Dry Valleys block in southern Victoria Land. Initial unroofing of the TAM comprised removal of much of a former capping sequence of Jurassic Kirkpatrick basalts, which preceded the formation of the Victoria Land Basin. Erosion of Beacon Supergroup outcrops took place during progressive uplift of the TAM in the Oligocene. Earliest CRP-3 Oligocene samples above 788 metres below the sea floor (mbsf) were sourced overwhelmingly in Beacon Supergroup strata, including a recognisable contribution from Triassic volcanogenic Lashly Formation sandstones (uppermost Victoria Group). Moving up-section, by 500 mbsf, the CRP-3 samples are depauperate quartz arenites dominantly derived from the quartzose Devonian Taylor Group. Between c. 500 and 450 mbsf, the modal parameters show a distinctive change indicating that small outcrops of basement granitoids and metamorphic rocks were also being eroded along with the remaining Beacon (mainly Taylor Group) sequence. Apart from enigmatic fluctuations in modal indices above 450 mbsf, similar to those displayed by samples in CRP-2/2A, the CRP-3 modes are essentially constant (within a broad data scatter) to the top of CRP-3. The proportion of exposed basement outcrop remained at < 20 %, indicating negligible uplift (i.e. relative stability) throughout that period.