793 resultados para Representative Core Samples


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The ocean plays a major role in the global carbon cycle, and attempts to reconstruct past changes in the marine carbonate system are increasing. The speciation of dissolved uranium is sensitive to variations in carbonate system parameters, and previous studies have shown that this is recorded in the uranium-to-calcium ratio (U/Ca) of the calcite shells of planktonic foraminifera. Here we test whether U/Ca ratios of deep-sea benthic foraminifera are equally suited as an indicator of the carbonate system. We compare U/Ca in two common benthic foraminifer species (Planulina wuellerstorfi and Cibicidoides mundulus) from South Atlantic core top samples with the calcite saturation state (Delta [CO3**2-] = [CO3**2-]in situ - [CO3**2-]sat) of the ambient seawater and find significant negative correlations for both species. Compared with planktonic foraminifera, the sensitivity of U/Ca in benthic foraminifera to changes in Delta [CO3**2-] is about 1 order of magnitude higher. Although Delta [CO3**2-] exerts the dominant control on the average foraminiferal U/Ca, the intertest and intratest variability indicates the presence of additional factors forcing U/Ca.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

For paleoceanographic studies, it is important to understand the processes that influence the calcium (Ca) isotopic composition of foraminiferal calcite tests preserved in the sediment record. Seven species of planktonic foraminifera from coretop sediments collectively exhibited a Ca temperature dependent fractionation of 0.013 per mil per °C. This is in agreement with previously published estimates for most species of planktonic foraminifera as well as biogenic and inorganic calcite and aragonite. Four species of planktonic foraminifera collected from a sediment trap showed a considerable amount of scatter and no consistent temperature dependent fractionation. Analyzed size fractions of coretop samples show no significant relationship with d44/40Ca. However, preliminary results suggest that the symbiotic and spinose foraminifera G. sacculifer might exhibit a relationship between test size and d44/40Ca. A one-box model in which Ca isotopes are allowed to fractionate by Rayleigh distillation from a biomineralization reservoir (internal pool) was used to constrain the isotopic composition of the original biomineralization Ca reservoir, assuming around 85% of the Ca reservoir is precipitated and the fractionation factor during precipitation is 0.9985 + 0.00002(T ºC). To explain the foraminiferal Ca isotope data, this model indicates that the Ca isotopic composition of the biomineralization reservoir is offset from seawater (approximately -0.8per mil).