661 resultados para Poor water exchange
Resumo:
Sixty hours of direct measurements of fluorescence were collected from six bowhead whales (Balaena mysticetus) instrumented with fluorometers in Greenland in April 2005 and 2006. The data were used to (1) characterize the three-dimensional spatial pattern of chlorophyll-a (Chl-a) in the water column, (2) to examine the relationships between whale foraging areas and productive zones, and (3) to examine the correlation between whale-derived in situ values of Chl-a and those from concurrent satellite images using the NASA MODIS (Moderate Resolution Imaging Spectroradiometer) EOS-AQUA satellite (MOD21, SeaWifs analogue OC3M and SST MOD37). Bowhead whales traversed 1600 km**2, providing information on diving, Chl-a structure and temperature profiles to depths below 200 m. Feeding dives frequently passed through surface waters ( >50 m) and targeted depths close to the bottom, and whales did not always target patches of high concentrations of Chl-a in the upper 50 m. Five satellite images were available within the periods whales carried fluorometers. Whales traversed 91 pixels collecting on average 761 s (SD 826) of Chl-a samples per pixel (0-136 m). The depth of the Chl-a maximum ranged widely, from 1 to 66 m. Estimates of Chl-a made from the water-leaving radiance measurements using the OC3M algorithm were highly skewed with most samples estimated as <1 mg/m**3 Chl-a, while data collected from whales had a broad distribution with Chl-a reaching >9 mg/m**3. The correlation between the satellite-derived and whale-derived Chl-a maxima was poor, a linear fit explained only 10% of the variance.
Resumo:
High-resolution analyses of the oxygen isotope ratio (18O/16O) of dissolved sulfate in pore waters have been made to depths of >400 meters below seafloor (mbsf) at open-ocean and upwelling sites in the eastern equatorial Pacific Ocean. d18O values of dissolved sulfate (d18O-SO4) at the organic-poor open-ocean Site 1231 gave compositions close to modern seawater (+9.5 per mil vs. Vienna-standard mean ocean water, providing no chemical or isotopic evidence for microbial sulfate reduction (MSR). In contrast, the maximum d18O values at Sites 1225 and 1226, which contain higher organic matter contents, are +20 per mil and +28 per mil, respectively. Depth-correlative trends of increasing d18O-SO4, alkalinity, and ammonium and the presence of sulfide indicate significant oxidation of sedimentary organic matter by sulfate-reducing microbial populations at these sites. Although sulfate concentration profiles at Sites 1225 and 1231 both show similarly flat trends without significant net MSR, d18O-SO4 values at Site 1225 reveal the presence of significant microbial sulfur-cycling activity, which contrasts to Site 1231. This activity may include contributions from several processes, including enzyme-catalyzed equilibration between oxygen in sulfate and water superimposed upon bacterial sulfate reduction, which would tend to shift d18O-SO4 toward higher values than MSR alone, and sulfide oxidation, possibly coupled to reduction of Fe and Mn oxides and/or bacterial disproportionation of sulfur intermediates. Large isotope enrichment factors observed at Sites 1225 and 1226 (epsilon values between 42 per mil and 79 per mil) likely reflect concurrent processes of kinetic isotope fractionation, equilibrium fractionation between sulfate and water, and sulfide oxidation at low rates of sulfate reduction. The oxygen isotope ratio of dissolved pore water sulfate is a powerful tool for tracing microbial activity and sulfur cycling by the deep biosphere of deep-sea sediments.