229 resultados para Correlation of forras


Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Morphological evolution in the late Neogene planktonic foraminifer Sphaeroidinella lineage involves a sudden increase of the percentage of specimens equipped with supplementary apertures (from <30% to >70%) in the mid-Pliocene (about 3.5 Ma). This evolutionary transition, marked by the first occurrence of specimens with large supplementary apertures in the lineage, is denoted the Sphaeroidinella event. Changes in the proportions of the supplementary apertures in the lineage were studied in 24 samples from ODP Hole 926A drilled in the equatorial Atlantic Ocean. In addition, detailed chronological models have been compiled for this section as well as for Pliocene sections from DSDP Holes 214, 502A, and 503B, where evolution in the lineage have been analyzed previously. Stratigraphic correlation of the studied sequences suggests that the Sphaeroidinella event took place at about 3.6 Ma in the eastern equatorial Pacific (Hole 503B) and at 3.5-3.6 Ma in the Caribbean (Hole 502A), while in the Atlantic Ocean (Hole 926A) and in the Indian Ocean (Hole 214) the event occurred after 3.5 Ma. The inferred diachrony of the mid-Pliocene Sphaeroidinella transition, which is considered to represent a prime example of punctuated anagenesis, suggests that this evolutionary modality may have an allopatric component. Its short duration (on average less than 50 kyr) and the detailed biochronology that could be established for this event qualifies it as a useful biostratigraphic tool in the low-latitude Pliocene oceans.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Knowledge of the subduction input flux of nitrogen (N) in altered oceanic crust (AOC) is critical in any attempt to mass-balance N across arc-trench systems on a global or individual-margin basis. We have employed sealed-tube, carrier-gas-based methods to examine the N concentrations and isotopic compositions of AOC. Analyses of 53 AOC samples recovered on DSDP/ODP legs from the North and South Pacific, the North Atlantic, and the Antarctic oceans (with larger numbers of samples from Site 801 outboard of the Mariana trench and Site 1149 outboard of the Izu trench), and 14 composites for the AOC sections at Site 801, give N concentrations of 1.3 to 18.2 ppm and d15N_air of -11.6? to +8.3?, indicating significant N enrichment probably during the early stages of hydrothermal alteration of the oceanic basalts. The N-d15N modeling for samples from Sites 801 and 1149 (n=39) shows that the secondary N may come from (1) the sedimentary N in the intercalated sediments and possibly overlying sediments via fluid-sediment/rock interaction, and (2) degassed mantle N2 in seawater via alteration-related abiotic reduction processes. For all Site 801 samples, weak correlation of N and K2O contents indicates that the siting of N in potassic alteration phases strongly depends on N availability and is possibly influenced by highly heterogeneous temperature and redox conditions during hydrothermal alteration. The upper 470-m AOC recovered by ODP Legs 129 and 185 delivers approximately 800 kg/km N annually into the Mariana margin. If the remaining less-altered oceanic crust (assuming 6.5 km, mostly dikes and gabbros) has MORB-like N of 1.5 ppm, the entire oceanic crust transfers 5100 kg/km N annually into that trench. This N input flux is twice as large as the annual N input of 2500 kg/km in seafloor sediments subducting into the same margin, demonstrating that the N input in oceanic crust, and its isotopic consequences, must be considered in any assessment of convergent margin N flux.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Subaerially erupted tholeiites at Hole 642E were never exposed to the high-temperature seawater circulation and alteration conditions that are found at subaqueous ridges. Alteration of Site 642 rocks is therefore the product of the interaction of rocks and fluids at low temperatures. The alteration mineralogy can thus be used to provide information on the geochemical effects of low temperature circulation of seawater. Rubidium-strontium systematics of leached and unleached tholeiites and underlying, continentally-derived dacites reflect interactions with seawater in fractures and vesicular flow tops. The secondary mineral assemblage in the tholeiites consists mainly of smectite, accompanied in a few flows by the assemblage celadonite + calcite (+/- native Cu). Textural relationships suggest that smectites formed early and that celadonite + calcite, which are at least in part cogenetic, formed later than and partially at the expense of smectite. Smectite precipitation occurred under variable, but generally low, water/rock conditions. The smectites contain much lower concentrations of alkali elements than has been reported in seafloor basalts, and sequentially leached fractions of smectite contain Sr that has not achieved isotopic equilibrium. 87Sr/86Sr results of the leaching experiments suggest that Sr was mostly derived from seawater during early periods of smectite precipitation. The basalt-like 87Sr/86Sr of the most readily exchangeable fraction seems to suggest a late period of exposure to very low water /rock. Smectite formation may have primarily occurred in the interval between the nearly 58-Ma age given by the lower series dacites and the 54.5 +/- 0.2 Ma model age given by a celadonite from the top of the tholeiitic section. The 54.5 +/- 0.2 Ma Rb-Sr model age may be recording the timing of foundering of the Voring Plateau. Celadonites precipitated in flows below the top of the tholeiitic section define a Rb-Sr isochron with a slope corresponding to an age of 24.3 +/- 0.4 Ma. This isochron may be reflecting mixing effects due to long-term chemical interaction between seawater and basalts, in which case the age provides only a minimum for the timing of late alteration. Alternatively, inferrential arguments can be made that the 24.3 +/- 0.4 isochron age reflects the timing of the late Oligocene-early Miocene erosional event that affected the Norwegian-Greenland Sea. Correlation of 87Sr/86Sr and 1/Sr in calcites results in a two-component mixing model for late alteration products. One end-member of the mixing trend is Eocene or younger seawater. Strontium from the nonradiogenic endmember can not, however, have been derived directly from the basalts. Rather, the data suggest that Sr in the calcites is a mixture of Sr derived from seawater and from pre-existing smectites. For Site 642, the reaction involved can be generalized as smectite + seawater ++ celadonite + calcite. The geochemical effects of this reaction include net gains of K and CO2 by the secondary mineral assemblage. The gross similarity of the reactions involved in late, low-temperature alteration at Site 642 to those observed in other sea floor basalts suggests that the transfer of K and C02 to the crust during low-temperature seawater-ocean crust interactions may be significant in calculations of global fluxes.