969 resultados para Cibicides kullenbergi, d13C


Relevância:

80.00% 80.00%

Publicador:

Resumo:

High-resolution oxygen and carbon isotope stratigraphy is presented for Miocene to early Pliocene sequences at three DSDP sites from the Lord Howe Rise, southwest Pacific, at water depths ranging from 1,300 to 2,000 m. Site 588 is located in the warm subtropics (~26°S), whereas Sites 590 and 591 are positioned in transitional (northern temperate) water masses (~31°S). Benthic foraminiferal oxygen and carbon isotope analyses were conducted on all sites; planktonic foraminiferal isotope data were generated for Site 590 only. Sample resolution in these sequences is on the order of 50,000 yr. or better. The chronological framework employed in this study is based largely upon ages assigned to Neogene calcareous nannoplankton boundaries. The benthic oxygen isotope record exhibits several major features during the Neogene. During most of the early Miocene, delta18O values were relatively low, reaching minimum values in the late early Miocene (19.5 to 16.5 Ma), and recording the climax of Neogene warmth. This was followed by a major increase in benthic delta18O values between ~16.5 and 13.5 Ma, which is interpreted as representing major, permanent accumulation of the East Antarctic ice sheet and cooling of bottom waters. During the 3 m.y. 18O enrichment, surface waters at these middle latitudes warmed between 16 and 14.5 Ma. During the remainder of the middle and late Miocene, benthic delta18O values exhibit distinct fluctuations, but the average value remained unchanged. The isotopic data show two distinct episodes of climatic cooling close to the middle/late Miocene boundary. The earliest of these events occurred between 12.5 and 11.5 Ma in the latest middle Miocene. The second cooling event occurred from 11 to 9 Ma, and is marked by some of the highest delta18O values of the entire Miocene. This was followed by relative warmth during the middle part of the late Miocene. The latest Miocene and earliest Pliocene (6.2 to 4.5 Ma) were marked by relatively high delta18O values, indicating increased cooling and glaciation. During the middle Pliocene, at about 3.4 Ma, a 0.4 per mil increase in benthic delta18O documents a net increase in average global ice volume and cooling of bottom waters. During this interval of increased glaciation, surface waters warmed by 2-3°C in southern middle-latitude regions. During the late Pliocene, between 2.6 and 2.4 Ma, a further increase in delta18O occurred; this has been interpreted by previous workers as heralding the onset of Northern Hemisphere glaciation. Surface-water warming in the middle latitudes occurred in association with major high-latitude glacial increases in the early middle Miocene (16-14 Ma), middle Pliocene (-3.5 Ma), and late Pliocene (~2.4 Ma). These intervals were also marked by increases in the vertical temperature gradient in the open ocean. Intersite correlation is enhanced by using carbon isotope stratigraphy. The great similarity of the delta13C time-series records within and between ocean basins and with water depth clearly indicates that changes in oceanwide average delta13C of [HCO3]- in seawater dominated the records, rather than local effects. Broad changes in the Neogene delta13C record were caused largely by transfer of organic carbon between continental and oceanic reservoirs. These transfers were caused by marine transgressions and regressions on the continental margins. The dominant feature of Neogene delta13C stratigraphy is a broad late early to early middle Miocene increase of about lâ between ~19 and 14.5 Ma. This trend occurred contemporaneously with a period of maximum coastal onlap (transgression) and maximum Neogene climatic warmth. The delta13C trend terminated during the expansion of the Antarctic ice sheet and associated marine regression. The latest Miocene carbon isotope shift (of up to - 0.75 per mil) at 6.2 Ma is clearly recorded in all sites examined and was followed by relatively low values during the remainder of the Neogene. This shift was caused by a glacioeustatic sealevel lowering that exposed continental margins via regression and ultimately increased the flux of organic carbon to the deep sea. An increase in delta13C values during the early Pliocene (~5 to 4 Ma) resulted from marine transgression during a time of global warmth.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Carbon isotope and benthic foraminiferal data from Blake Outer Ridge, a sediment drift in the western North Atlantic (Ocean Drilling Program Sites 994 and 997, water depth ~ 2800 m), document variability in the relative volume of Southern Component (SCW) and Northern Component Waters (NCW) over the last 7 Ma. SCW was dominant before ~5.0 Ma, at ~3.6-2.4 Ma, and 1.2-0.8 Ma, whereas NCW dominated in the warm early Pliocene (5.0-3.6 Ma), and at 2.4-1.2 Ma. The relative volume of NCW and SCW fluctuated strongly over the last 0.8 Ma, with strong glacial-interglacial variability. The intensity of the Western Boundary Undercurrent was positively correlated to the relative volume of NCW. Values of Total Organic Carbon (TOC) were > 1.5% in sediments older than ~ 3.8 Ma, and not correlated to high primary productivity indicators, thus may reflect lateral transport of organic matter. TOC values decreased during the intensification of the Northern Hemisphere Glaciation (NHG, 3.8-1.8 Ma). Benthic foraminiferal assemblages underwent major changes when the sites were dominantly under SCW (3.6-2.4 and 1.2-0.8 Ma), coeval with the 'Last Global Extinction' of elongate, cylindrical deep-sea benthic foraminifera, which has been linked to cooling, increased ventilation and changes in the efficiency of the biological pump. These benthic foraminiferal turnovers were neither directly associated with changes in dominant bottom water mass nor with changes in productivity, but occurred during global cooling and increased ventilation of deep waters associated with the intensification of the NHG.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A record of carbon and oxygen isotopes in benthic and planktonic foraminifers has been obtained from the interval corresponding to the last 2.4 m.y. of Site 610, Holes 610 and 610A, with a sample resolution of about 30 kyr. The record from the late Quaternary (<0.9 Ma) shows large amplitudes and high frequencies in oxygen isotopic variation. Prior to 0.9 Ma the isotopic variability record is reduced in amplitude (but not in frequency) compared with the late Quaternary, suggesting lower ice-volume and climatic fluctuations, and higher average eustatic sea level. Left-coiling (L, polar) Neogloboquadrinapachyderma were not found in samples between 1.0 and 2.2 Ma, indicating less influence of polar front migrations in the Northeast Atlantic. Both polar planktonic faunas and larger isotope fluctuations reappear in the lowermost samples (2.3 to 2.4 Ma), pointing toward a period of larger climatic variability in the late Pliocene than in the early Quaternary. The variation in benthic d13C and hence in deep-water d13C seems to have been constant through the analyzed section, reflecting a stable variability in the production of North Atlantic Deep Water (NADW) and possibly in Norwegian-Greenland Sea Overflow. Preliminary analyses of amino-acid epimerization in N. pachyderma (L) indicate a constant rate of epimerization to approximately 0.3 Ma. Beneath this level the average epimerization rate is much reduced.