760 resultados para CORES
Resumo:
Because of a close relationship between detrital flux variations and magnetic susceptibility (MS) flux (MS cm**3 of bulk sediment multiplied by the linear sedimentation rate) variations in the southeast Indian basin of the southern ocean, MS flux profiles have been used to examine the spatial and temporal detrital flux changes in this basin during the last climatic cycle. Results indicate a general increase in detrital material input during the coldest periods, suggesting a widespread phenomenon, at least on the basin scale. Mineralogical data, geochemical data, and 87Sr/86Sr isotopic ratios have been used to determine the origin and transport mechanisms responsible for increased detrital flux during glacial periods. Mineralogical and geochemical data show that these glacial 'highs' are due to increases in both Kerguelen-Crozet volcanic and Antarctic detrital inputs. The 87Sr/86Sr isotopic composition of the >45-µm fraction indicates that the Kerguelen-Crozet province contributes to at least 50% of the coarse particule input to the west. This contribution decreases eastward to reach less than 10%. These tracers clearly indicate that the Crozet-Kerguelen province was a major source region of detrital in the western part of the basin during glacial times. In contrast, material of Antarctic origin is well represented in the whole basin (fine and coarse fractions). Because of the minor amount of coarse particles in the sediments, volcanic particles from Kerguelen and crustal particles from Antarctica have most probably been transported by the Antarctic bottom water current and/or the Circumpolar deepwater current during glacial periods as is the case today. Nevertheless, the presence of coarse particles even in low amount suggests also a transport by ice rafting (sea-ice and icebergs), originated from both Kerguelen and Antarctic sources. However, the relative importance of both hydrographic and ice-rafting modes of transport cannot be identified accurately with our data. During low sea level stands (glacial maximum periods), increasing instability and erosion of the continental platform and shallow plateaus could have resulted in a more efficient transfer of crustal and volcano-detrital material to the Southeast Indian basin. At the same time, extension of the grounded ice shelves over the continental margins and increase in the erosion rate of the Antarctic ice sheet could have induced a greater input of ice rafted detritus (IRD) to southern ocean basins. Enhancement of the circumpolar deepwater current strength might have also carried a more important flux of detrital material from Kerguelen. However, an increase in the bottom water flow is not necessarily required.
Resumo:
The climate during the Cenozoic era changed in several steps from ice-free poles and warm conditions to ice-covered poles and cold conditions. Since the 1950s, a body of information on ice volume and temperature changes has been built up predominantly on the basis of measurements of the oxygen isotopic composition of shells of benthic foraminifera collected from marine sediment cores. The statistical methodology of time series analysis has also evolved, allowing more information to be extracted from these records. Here we provide a comprehensive view of Cenozoic climate evolution by means of a coherent and systematic application of time series analytical tools to each record from a compilation spanning the interval from 4 to 61 Myr ago. We quantitatively describe several prominent features of the oxygen isotope record, taking into account the various sources of uncertainty (including measurement, proxy noise, and dating errors). The estimated transition times and amplitudes allow us to assess causal climatological-tectonic influences on the following known features of the Cenozoic oxygen isotopic record: Paleocene-Eocene Thermal Maximum, Eocene-Oligocene Transition, Oligocene-Miocene Boundary, and the Middle Miocene Climate Optimum. We further describe and causally interpret the following features: Paleocene-Eocene warming trend, the two-step, long-term Eocene cooling, and the changes within the most recent interval (Miocene-Pliocene). We review the scope and methods of constructing Cenozoic stacks of benthic oxygen isotope records and present two new latitudinal stacks, which capture besides global ice volume also bottom water temperatures at low (less than 30°) and high latitudes. This review concludes with an identification of future directions for data collection, statistical method development, and climate modeling.