621 resultados para BNCT, Strahlentherapie, ICP-MS, PGAA, Radiographie
Resumo:
This paper reports results of geological studies carried out during two marine expeditions of R/VAkademik M.A. Lavrent'ev (Cruises 37 and 41) in 2005 and 2006 at the underwater Vityaz Ridge. Dredging has yielded various rocks from the basement and sedimentary cover of the ridge within three polygons. On the basis of radioisotope age determinations, petrochemical, and paleontological data all the rocks have been subdivided into the following complexes: volcanic rock of Paleocene, Eocene, Late Oligocene, Middle Miocene, and Pliocene-Pleistocene; volcanogenic-sedimentary rocks of Late Cretaceous - Early Paleocene, Paleogene (undifferentiated), Oligocene - Early Miocene, and Pliocene-Pleistocene. Determinations of age and chemical composition of the rocks have enabled to specify formation conditions of the complexes and to trace geological evolution of the Vityaz Ridge. Presence of young Pliocene-Pleistocene volcanites allows to conclude about the modern tectono-magmatic activity of the central part of the Pacific slope of the Kuril Islands.
Resumo:
Ferromanganese micro- and macronodules in eupelagic clays at Site AKO26-35 in the Southwest Pacific Basin were studied in order to check REE distribution during ferromanganese ore formation in non-productive zones of the Pacific Ocean. Host sediments and their labile fraction, ferromanganese micronodules (in size fractions 50-100, 100-250, 250-500, and >500 ?m) from eupelagic clays (horizons 37-10, 105-110, 165-175, and 189-190 cm), and buried ferromanganese micronodules (horizons 64-68, 158-159, and 165-166 cm) were under study. Based on partition analysis data anomalous REE enrichment in eupelagic clays from Site AKO26-35 is related to accumulation of rare earth elements in iron hydroxophosphates. Concentration of Ce generally bound with manganese oxyhydroxides is governed by oxidation of Mn and Ce in ocean surface waters. Micronodules (with Mn/Fe from 0.7 to 1.6) inherit compositional features of the labile fraction of bottom sediments. Concentrations of Ce, Co, and Th depend on micronodule sizes. Enrichment of micronodules in hydrogenic or hydrothermal matter is governed by their sizes and by a dominant source of suspended oxyhydroxide material. The study of buried ferromanganese micronodules revealed general regularities in compositional evolution of oxyhydroxide matrices of ferromanganese micro- and macronodules. Compositional variation of micro- and macronodules relative to the labile fraction of sediments in the Pacific non-productive zone dramatically differs from the pattern in bioproductive zones where micronodule compositions in coarser fractions are similar to those in associated macronodules and labile fractions of host sediments due to more intense suboxidative diagenesis.
Resumo:
The proposed origins for the Enriched Mantle I component are many and various and some require an arbitrary addition of an exotic component, be it pure sediment or an enriched melt from the subcontinental lithosphere. With Pitcairn, Walvis Ridge is the 'type-locality' for the Enriched Mantle I (EMI) component. We analyzed basalts from DSDP Site 525A, Site 527 and Site 528 on the Walvis Ridge with the aim to constrain the history of its source. The isotopic compositions we measured for the three sites overlap with the values obtained by Richardson et al. (1982a) and extend towards less radiogenic Sr and more radiogenic Pb and Nd isotopic compositions. We used our new trace element and radiogenic isotope (Hf, Nd, Pb and Sr) characterization in combination with the literature data to produce the simplest possible model that satisfies the trace element and isotopic constraints. Although the elevated 207Pb/204Pb with respect to 206Pb/204Pb predicts an ancient origin for EMI, none of the proposed origins had modeled it as such. The data is consistent with the EMI composition being formed by the addition of a melt to a mantle with bulk Earth-like composition followed by melt extraction of a low degree melt. The timing of these two events is such that the metasomatism has to have taken place prior to 4 Ga and the subsequent melt removal before 3.5 Ga. This confirms the expectation of an ancient character for the EMI component. The Walvis Ridge data shows two distinct two component mixing trends: one formed by the less enriched Site 527 and Site 528 basalts and one formed by the Site 525A basalts. The two trends have the EMI endmember in common. The less depleted end of the Site 527-Site 528 basalts is FOZO-like and can be explained by the addition of a recycled component (basaltic oceanic crust plus sediment). This recycled component was altered during subduction. The sense and magnitude of the chemical fractionation resulting from the subduction alteration are in agreement with dehydration experiments on basalts and sediment. Compared to other EMI like basalts the Walvis Ridge basalts have flatter REE patterns and show less fractionation between large ion lithophile and heavy REE elements. Using the isotopic compositions as constrains for the parent-daughter ratios we were able to model the trace element patterns of the basalts as melting between 5 and 10% for Site 525A and between 10 and 15% for the depleted end of the Site 528-Site 527 array. In all cases a significant portion of melting takes place in the garnet stability field.
Resumo:
This paper presents materials on the chemical and mineralogical composition of Fe-Mn mineralization in island arcs (Kuril, Nampo, Mariana, New Britain, New Hebrides, and Kermadec) in the western part of the Pacific Ocean. The mineralization was proved to be of hydrothermal and/or hydrogenic genesis. The former is produced by hydrothermal Fe and Mn oxi-hydroxides that cement volcanic-terrigenous material in sediments. Some Fe oxyhydroxides can be derived via the halmyrolysis of volcaniclastic material. Crusts of this stage are characterized by fairly low concentrations of trace and rare elements, and their REE composition is inherited from the volcanic-terrigenous material. The minerals of the Mn oxyhydroxides are todorokite and "Ca-birnessite". The Mn/Fe ratio increases away from the discharge sites of the hydrothermal solutions. The hydrogenic Fe-Mn crusts are characterized by high concentrations of trace and minor elements of both the Mn group (Co, Ni, Tl, and Mo) and the Fe group (REE, Y, and Th). The hydrogenic crusts consist of Fe-vernadite and Mn-feroxyhyte. Some of the hydrothermal crusts originally had a hydrothermal genesis. The first data were obtained on crust B30-72-10 from the Macauley Seamount in the Kermadec island arc, which contained anomalously high concentrations of Co (2587 ppm) and other Mn-related trace elements in the absence of hydrogeneous Fe oxyhydroxides.
Resumo:
Deep water formation in the North Atlantic and Southern Ocean is widely thought to influence deglacial CO2 rise and climate change; here we suggest that deep water formation in the North Pacific may also play an important role. We present paired radiocarbon and boron isotope data from foraminifera from sediment core MD02-2489 at 3640 m in the North East Pacific. These show a pronounced excursion during Heinrich Stadial 1, with benthic-planktic radiocarbon offsets dropping to ~350 years, accompanied by a decrease in benthic d11B. We suggest this is driven by the onset of deep convection in the North Pacific, which mixes young shallow waters to depth, old deep waters to the surface, and low-pH water from intermediate depths into the deep ocean. This deep water formation event was likely driven by an increase in surface salinity, due to subdued atmospheric/monsoonal freshwater flux during Heinrich Stadial 1. The ability of North Pacific Deep Water (NPDW) formation to explain the excursions seen in our data is demonstrated in a series of experiments with an intermediate complexity Earth system model. These experiments also show that breakdown of stratification in the North Pacific leads to a rapid ~30 ppm increase in atmospheric CO2, along with decreases in atmospheric d13C and D14C, consistent with observations of the early deglaciation. Our inference of deep water formation is based mainly on results from a single sediment core, and our boron isotope data are unavoidably sparse in the key HS1 interval, so this hypothesis merits further testing. However we note that there is independent support for breakdown of stratification in shallower waters during this period, including a minimum in d15N, younging in intermediate water 14C, and regional warming. We also re-evaluate deglacial changes in North Pacific productivity and carbonate preservation in light of our new data, and suggest that the regional pulse of export production observed during the Bølling-Allerød is promoted by relatively stratified conditions, with increased light availability and a shallow, potent nutricline. Overall, our work highlights the potential of NPDW formation to play a significant and hitherto unrealized role in deglacial climate change and CO2 rise.
Resumo:
The Astoria submarine fan, located off the coast of Washington and Oregon, has grown throughout the Pleistocene from continental input delivered by the Columbia River drainage system. Enormous floods from the sudden release of glacial lake water occurred periodically during the Pleistocene, carrying vast amounts of sediment to the Pacific Ocean. DSDP site 174, located on the southern distal edge of the Astoria Fan, is composed of 879 m of terrigenous sediments. The section is divided into two major units separated by a distinct seismic discontinuity: an upper, turbidite fan unit (Unit I), and an underlying finer-grained unit (Unit II). Both units have overlapping ranges of Nd and Hf isotope compositions, with the majority of samples having e-Nd values of -7.1 to -15.2 and eHf values -6.2 to -20.0; the most notable exception is the uppermost sample in the section, which is identical to modern Columbia River sediment. Nd depleted mantle model ages for the site range from 2.0 to 1.2 Ga and are consistent with derivation from cratonic Proterozoic source regions, rather than Cenozoic and Mesozoic terranes proximal to the Washington-Oregon coast. The Astoria Fan sediments have significantly less radiogenic Nd (and Hf) isotopic compositions than present day Columbia River sediment (e-Nd=-3 to -4; [Goldstein, S.J., Jacobsen, S.B., 1987. Nd and Sr isotopic systematics of river water suspended material: implications for crustal evolution. Earth. Planet. Sci. Lett. 87, 249-265; doi:10.1016/0012-821X(88)90013-1]), and suggest that outburst flooding, tapping Proterozoic source regions, was the dominant sediment transport mechanism in the genesis and construction of the Astoria Fan. Pb isotopes form a highly linear 207Pb/204Pb - 206Pb/204Pb array, and indicate the sediments are a binary mixture of two disparate sources with isotopic compositions similar to Proterozoic Belt Supergroup metasediments and Columbia River Basalts. The combined major, trace and isotopic data argue that outburst flooding was responsible for depositing the majority (top 630 m) of the sediment in the Astoria Fan.
Resumo:
Behavior of rare earth elements (REE) and Th is studied along the Transatlantic transect at 22°N. It is shown that both REE and Th contents relative to Al (the most lithogenic element) increase toward the pelagic region. The increasing trend becomes more complicated due to variations in content of biogenic calcium carbonate that acts as a diluting component in sediments. REE composition varies symmetrically relative to the Mid-Atlantic Ridge (MAR) emphasizing weak hydrothermal influence on sediments of the ridge axis, although the well-known criteria for hydrothermal contribution, such as Al/(Al+Mn+Fe) and (Fe+Mn)/Ti, do not reach critical values. Variations in REE content and composition allowed to distinguish the following five sediment zones in the transect: (I) terrigenous sediments of the Nares abyssal plain; (II) pelagic sediments of the North American Basin; (III) carbonate ooze of the MAR axis; (IV) pelagic sediments of the Canary Basin; and (V) terrigenous clay and calcareous mud of the African continental slope and slope base. Ferromanganese nodules of the hydrogenous type with extremely high Ce (up to 1801 ppm) and Th (up to 138 ppm) contents occur in pelagic sediments. It is ascertained that P, REE, and Th contents depend on Fe content in Atlantic sediments. Therefore, one can suggest that only minor amount of phosphorus is bound with bone debris. Low concentration of bone debris phosphorus is a result of relatively high sedimentation rates in the Atlantic Ocean, as compared with those in pelagic regions of the Pacific Ocean.
Resumo:
Magnesium/calcium data from Southern Ocean planktonic foraminifera demonstrate that high-latitude (~55°S) southwest Pacific sea surface temperatures (SSTs) cooled 6° to 7°C during the middle Miocene climate transition (14.2 to 13.8 million years ago). Stepwise surface cooling is paced by eccentricity forcing and precedes Antarctic cryosphere expansion by ~60 thousand years, suggesting the involvement of additional feedbacks during this interval of inferred low-atmospheric partial pressure of CO2 (pCO2). Comparing SSTs and global carbon cycling proxies challenges the notion that episodic pCO2 drawdown drove this major Cenozoic climate transition. SST, salinity, and ice-volume trends suggest instead that orbitally paced ocean circulation changes altered meridional heat/vapor transport, triggering ice growth and global cooling.
Resumo:
Biological productivity in the modern equatorial Pacific Ocean, a region with high nutrients and low chlorophyll, is currently limited by the micronutrient Fe. In order to test whether Fe was limiting in the past and to identify potential pathways of Fe delivery that could drive Fe fertilization (i.e., dust delivery from eolian inputs vs. Fe supplied by the Equatorial Undercurrent), we chemically isolated the terrigenous material from sediment along a cross-equatorial transect in the central equatorial Pacific at 140°W and at Ocean Drilling Program Site 850 in the eastern equatorial Pacific. We quantified the contribution from each potential Fe-bearing terrigenous source using a suite of chemical- and isotopic discrimination strategies as well as multivariate statistical techniques. We find that the distribution of the terrigenous sources (i.e., Asian loess, South American ash, Papua New Guinea, and ocean island basalt) varies through time, latitude, and climate. Regardless of which method is used to determine accumulation rate, there also is no relationship between flux of any particular Fe source and climate. Moreover, there is no connection between a particular Fe source or pathway (eolian vs. Undercurrent) to total productivity during the Last Glacial Maximum, Pleistocene glacial episodes, and the Miocene "Biogenic Bloom". This would suggest an alternative process, such as an interoceanic reorganization of nutrient inventories, may be responsible for past changes in total export in the open ocean, rather than simply Fe supply from dust and/or Equatorial Undercurrent processes. Additionally, perhaps a change in Fe source or flux is related to a change in a particular component of the total productivity (e.g., the production of organic matter, calcium carbonate, or biogenic opal).