895 resultados para Aliphatic hydrocarbons. Bottom sediments. Potengi River estuary, Natal - RN
Resumo:
Analysis of rare earth element (REE) distribution and behavior in ore-bearing hydrothermal-sedimentary deposits from the Red Sea is carried out. Geochemical patterns and mechanisms of REE accumulation in metalliferous sediments of the open ocean and in deposits adjoined to areas of hydrothermal discharge are shown. Main factors, which determine composition of REE and the level of their accumulation in hydrothermal occurrences of the Red Sea, are considered.
Resumo:
Results of mineralogical and isotopic analyzes of sulfur and carbon in carbonate nodules and host bottom sediments and results of 14C measurement in carbonate nodules are reported. It is proved that the carbonate nodules formed 11-22 thousand years ago in anaerobic diagenesis of bottom sediments rich in organic matter. Isotopic light metabolic carbon dioxide was a source of carbonate for nodules. It formed during microbial degradation of organic matter of bottom sediments.
Resumo:
Mineral and chemical compositions and physical properties of diatomaceous clayey-siliceous sediments from the Sea of Okhotsk are studied. Accumulation rates of silica are determined. Their compositional model based on silica content is similar to that of Late Jurassic and Olenekian-Middle Anisian cherts from the Sikhote Alin region. Thickness of Holocene siliceous unit and accumulation rates of siliceous deposits depended on bioproductivity in the upper water layer and seafloor topography. Accumulation rates of amorphous SiO2 (0.05-5.7 g/cm**2/ka) and free SiO2 (0.5-11.6 g/cm**2/ka) are minimal on seamounts and maximal in depressions near foothills. These values match accumulation rates of free SiO2 in Triassic and Late Jurassic basins of the Sikhote Alin region (0.33-3 g/cm**2/ka). Comparison of composition and accumulation rates of silica shows that Triassic and Late Jurassic siliceous sequences of Sikhote Alin could accumulate in a marginal marine basin near a continent.
Resumo:
This paper reports data including new analyses of contents of Ni, Co, V, Mo, Fe, Mn, Zn, Ba, Sc, Y, Cd, Rb, Cs, and W in bottom sediments of the Deryugin Basin. Features of chemical element distribution in the bottom area were identified and zones of maximum accumulation of major and trace elements were allocated. A correlation between the elements was shown.
Resumo:
Distribution of Fe, Mn, Ti, Cu, Ni, Co, V, Cr, Mo, As in bottom sediments of a section from the Hawaiian Islands to the coast of Mexico. In the surface layer and isochronic layers of sediments from biogenic-terrigenous sediments of the Mexico coast to pelagic red clays of the Northeast Basin contents of all studied elements increase, and more sharply for mobile ones - Mn, Mo, Cu, Ni, Co, As. In near Hawaii sediments rich in coarsely fragmented volcanic-terrigenous and pyroclastic material of basalt composition enriched in Ti, Fe, Cr, V, P contents of these elements in surface sediments and in sediment mass increase and contents of Mn, Mo, Ni, Co, Cu, As (for the same reason) decrease compared to red clays. An area of hemipelagic and transition sediments is identified; these sediments have much higher contents of Mn, Fe, Cu, Ni, Mo, As, (Ba) than red clays and similar sediments of the Northwest Pacific Ocean. This is due to hydrothermal activity in the tectonically active zone at the northern extension of the East Pacific Rise. Similar character of distribution of the elements in the surface layer and in the isochrone layers of bottom sediments along the most part of the section is shown. Similarity between distribution of the elements in sediments of the western and the eastern parts of the Transpacific section is established.
Resumo:
Six Deep Sea Drilling Project (DSDP) Sites (252, 285, 315, 317, 336, 386) were examined for the chemical composition of the dissolved salts in interstitial waters, the oxygen isotopic composition of the interstitial waters, and the major ion composition of the bulk solid sediments. An examination of the concentration-depth profiles of dissolved calcium, magnesium, potassium, and H218O in conjunction with oxygen isotope mass balance calculations confirms the hypothesis that in DSDP pelagic drill sites concentration gradients in Ca. Mg. K, and H218O are largely due to alteration reactions occurring in the basalts of Layer 2 and to alteration reactions involving volcanic matter dispersed in the sediment column. Oxygen isotope mass balance calculations require substantial alteration of Layer 2 (up to 25% of the upper 1000 m). but only minor exchange of Ca, Mg, and K occurs with the overlying ocean. This implies that alteration reactions in Layer 2 are almost isochemical.
Resumo:
Behavior of rare earth elements (REE) and Th is studied along the Transatlantic transect at 22°N. It is shown that both REE and Th contents relative to Al (the most lithogenic element) increase toward the pelagic region. The increasing trend becomes more complicated due to variations in content of biogenic calcium carbonate that acts as a diluting component in sediments. REE composition varies symmetrically relative to the Mid-Atlantic Ridge (MAR) emphasizing weak hydrothermal influence on sediments of the ridge axis, although the well-known criteria for hydrothermal contribution, such as Al/(Al+Mn+Fe) and (Fe+Mn)/Ti, do not reach critical values. Variations in REE content and composition allowed to distinguish the following five sediment zones in the transect: (I) terrigenous sediments of the Nares abyssal plain; (II) pelagic sediments of the North American Basin; (III) carbonate ooze of the MAR axis; (IV) pelagic sediments of the Canary Basin; and (V) terrigenous clay and calcareous mud of the African continental slope and slope base. Ferromanganese nodules of the hydrogenous type with extremely high Ce (up to 1801 ppm) and Th (up to 138 ppm) contents occur in pelagic sediments. It is ascertained that P, REE, and Th contents depend on Fe content in Atlantic sediments. Therefore, one can suggest that only minor amount of phosphorus is bound with bone debris. Low concentration of bone debris phosphorus is a result of relatively high sedimentation rates in the Atlantic Ocean, as compared with those in pelagic regions of the Pacific Ocean.
Resumo:
Abundance of noble metals and bulk chemical composition have been studied in bottom sediments of the Chukchi Sea. Distribution of noble metals and their correlation with major and trace elements in the sediments have been analyzed using multicomponent statistics. It was established that average contents of noble metals in the bottom sediments of the Chukchi Sea significantly exceed those both in shelf terrigenous sediments and stratisphere. Osmium and iridium enrich mixed and pelitic sediments relative to shallow-water sediments and their influx is presumably determined by erosion of coastal and bottom unconsolidated deposits. High Ag, Ru, Au, and Pt contents were identified in clayey sediments enriched in biogenic elements in the some areas of the Southern Chukchi plain (Chukchi Sea) confined to intersection zones of submeridional and sublatitudinal structures of the graben-rift system, which formed in Mesozoic and activated in Late Cenozoic.
Resumo:
Physical properties (water content, bulk density, magnetic susceptibility, natural remanent magnetization, nature of magnetization, and composition of ferromagnetic fraction), chemical, and (optionally) mineral composition of bottom sediments from the north-west Sea of Japan have been studied. Their stratigraphic subdivision based on composition of diatoms has been carried out. Obtained data have allowed to find out some aspects of influence of paleogeographic conditions and diagenetic processes on change of physical properties of the sediments, as well as on their composition in Holocene and Late Pleistocene.
Resumo:
This paper presents data on chemical composition of bottom sediments from the Chukchi Sea and the adjacent Arctic Ocean. Multivariate statistical techniques were used for analysis of the data set and revealed that grain size fractionation of the original terrigenous component during sedimentation was the major factor of clustering of the samples in study. Secondary factors include accumulation of biogenic siliceous and carbonate material and chemogenic or biochemical accumulation of iron, manganese, and some trace elements. The latter factor was significant in areas of tectonic activity within the graben-rift system of the Chukchi Sea.