906 resultados para Accumulation rate, sand > 63 µm
Resumo:
Low concentrations of organic carbon in slowly accumulating sediments from Sites 597, 600, and 601 reflect a history of low marine productivity in the subtropical South Pacific since late Oligocene times. The distributions of n-alkanes, n-alkanoic acids, and n-alkanols provide evidence of the microbial alteration of sediment organic matter. Landderived hydrocarbons, possibly from eolian transport, dominate n-alkane distributions in these samples.
Resumo:
Oxygen isotope records, radiocarbon AMS data, carbonate and opal stratigraphy, sediment magnetic susceptibility, tephrachronology, and paleontological results were used to obtain detailed sediment stratigraphy and an age model for the studied cores. For studying sea-ice sedimentation an analysis of lithogenic grain number in >0.15 mm grain size fraction of bottom sediments was carried out. For quantitative estimation of intensity ice-rafting debris sedimentation number of IRD particles per sq cm per ka was calculated. Obtained results allowed to plot IRD AR distribution for the first oxygen isotope stage (0-12.5 14C ka, 14C) and for the second stage (12.5-24 14C ka). The first stage was subdivided into the latest deglaciation and the beginning of Holocene (6-12.5 14C ka) (transitive period), when the sea level was changing significantly, and the second part of Holocene (0-6 14C ka), when climate conditions and the sea level were similar to modern estimates. Data clearly show strong increase in ice formation in the glacial Sea of Okhotsk and its extent in the middle part of the sea. Average annual duration of ice coverage during glaciation was longer than that for interglaciation. However the sea ice cover was not continuous all the year round and disappeared in summer time except the far northwestern part of the sea.
Resumo:
The Eocene and Oligocene epochs (55 to 23 million years ago) comprise a critical phase in Earth history. An array of geological records (Zachos et al., 2001, doi:10.1126/science.1059412; Lear et al., 2000, doi:10.1126/science.287.5451.269; Coxall et al., 2005, doi:10.1038/nature03135; Pekar et al., 2005; doi:10.1130/B25486.1; Strand et al., 2003, doi:10.1016/S0031-0182(03)00396-1) supported by climate modelling (DeConto and Pollard, 2003, doi:10.1038/nature01290) indicates a profound shift in global climate during this interval, from a state that was largely free of polar ice caps to one in which ice sheets on Antarctica approached their modern size. However, the early glaciation history of the Northern Hemisphere is a subject of controversy (Coxall et al., 2005, doi:10.1038/nature03135; Tripati et al., 2005, doi:10.1038/nature03874; Wolf-Welling et al., 1996, doi:10.2973/odp.proc.sr.151.139.1996; Moran et al., 2006, doi:10.1038/nature04800). Here we report stratigraphically extensive ice-rafted debris, including macroscopic dropstones, in late Eocene to early Oligocene sediments from the Norwegian-Greenland Sea that were deposited between about 38 and 30 million years ago. Our data indicate sediment rafting by glacial ice, rather than sea ice, and point to East Greenland as the likely source. Records of this type from one site alone cannot be used to determine the extent of ice involved. However, our data suggest the existence of (at least) isolated glaciers on Greenland about 20 million years earlier than previously documented (Winkler et al., 2002, doi:10.1007/s005310100199), at a time when temperatures and atmospheric carbon dioxide concentrations were substantially higher.
Resumo:
Reconstructing the long-term evolution of organic sedimentation in the eastern Equatorial Atlantic (ODP Leg 159) provides information about the history of the climate/ocean system, sediment accumulation, and deposition of hydrocarbon-prone rocks. The recovery of a continuous, 1200 m long sequence at ODP Site 959 covering sediments from Albian (?) to the present day (about 120 Ma) makes this position a key location to study these aspects in a tropical oceanic setting. New high resolution carbon and pyrolysis records identify three main periods of enhanced organic carbon accumulation in the eastern tropical Atlantic, i.e. the late Cretaceous, the Eocene-Oligocene, and the Pliocene-Pleistocene. Formation of Upper Cretaceous black shales off West Africa was closely related to the tectonosedimentary evolution of the semi-isolated Deep Ivorian Basin north of the Côte d'Ivoire-Ghana Transform Margin. Their deposition was confined to certain intervals of the last two Cretaceous anoxic events, the early Turonian OAE2 and the Coniacian-Santonian OAE3. Organic geochemical characteristics of laminated Coniacian-Santonian shales reveal peak organic carbon concentrations of up to 17% and kerogen type I/II organic matter, which qualify them as excellent hydrocarbon source rocks, similar to those reported from other marginal and deep sea basins. A middle to late Eocene high productivity period occurred off equatorial West Africa. Porcellanites deposited during that interval show enhanced total organic carbon (TOC) accumulation and a good hydrocarbon potential associated with oil-prone kerogen. Deposition of these TOC-rich beds was likely related to a reversal in the deep-water circulation in the adjacent Sierra Leone Basin. Accordingly, outflow of old deep waters of Southern Ocean origin from the Sierra Leone Basin into the northern Gulf of Guinea favored upwelling of nutrient-enriched waters and simultaneously enhanced the preservation potential of sedimentary organic matter along the West African continental margin. A pronounced cyclicity in the carbon record of Oligocene-lower Miocene diatomite-chalk interbeds indicates orbital forcing of paleoceanographic conditions in the eastern Equatorial Atlantic since the Oligocene-Miocene transition. A similar control may date back to the early Oligocene but has to be confirmed by further studies. Latest Miocene-early Pliocene organic carbon deposition was closely linked to the evolution of the African trade winds, continental upwelling in the eastern Equatorial Atlantic, ocean chemistry and eustatic sea level fluctuations. Reduction in carbonate carbon preservation associated with enhanced carbon dissolution is recorded in the uppermost Miocene (5.82-5.2 Ma) section and suggests that the latest Miocene carbon record of Site 959 documents the influence of corrosive deep waters which formed in response to the Messinian Salinity Crisis. Furthermore, sea level-related displacement of higher productive areas towards the West African shelf edge is indicated at 5.65, 5.6, 5.55, 5.2, 4.8 Ma. In view of humid conditions in tropical Africa and a strong West African monsoonal system around the Miocene-Pliocene transition, the onset of pronounced TOC cycles at about 5.6 Ma marks the first establishment of upwelling cycles in the northern Gulf of Guinea. An amplification in organic carbon deposition at 3.3 Ma and 2.45 Ma links organic sedimentation in the tropical eastern Equatorial Atlantic to the main steps of northern hemisphere glaciation and testifies to the late Pliocene transition from humid to arid conditions in central and western African climate. Aridification of central Africa around 2.8 Ma is not clearly recorded at Site 959. However, decreased and highly fluctuating carbonate carbon concentrations are observed from 2.85 Ma on that may relate to enhanced terrigenous (eolian) dilution from Africa.
Resumo:
To understand the late Cenozoic glacial history of the Northern Hemisphere, continuous long-term proxy records from climatically sensitive regions must be examined. Ice-rafted debris (IRD) from Ocean Drilling Program (ODP) Site 918, located in the Irminger Basin, is one such record. IRD in marine sediments is a direct indicator of the presence of glacial ice extending to sea level on adjacent landmasses, and, therefore, is an important paleoclimatic signal from the mid- to high latitudes. The IRD record at Site 918 is the first long-term ice-rafting record available for southeast Greenland, a region that may have been a key nucleation area for widespread glaciation during the late Cenozoic (Larsen et al, 1994, doi:10.2973/odp.proc.ir.152.1994). This data report presents the results of coarse sand-size IRD mass accumulation rate (MAR) analyses for Site 918 from the late Miocene through the Pleistocene. In addition, a preliminary analysis of IRD compositions is included. Detailed discussions of the local, regional, and global paleoclimatic implications of this data, and of the companion Site 919 Pleistocene IRD MAR data (Krissek, 1999, doi:10.2973/odp.proc.sr.163.118.1999), are in preparation. Such future work will include comparisons of these IRD MAR data sets to the Site 919 oxygen isotope stratigraphy developed by Flower (1998, doi:10.2973/odp.proc.sr.152.219.1998).
Resumo:
During the late Pliocene-middle Pleistocene, 63 species of elongate, bathyal-upper abyssal benthic foraminifera (Extinction Group = Stilostomellidae, Pleurostomellidae, some Nodosariidae) declined in abundance and finally disappeared in the northern Indian Ocean (ODP Sites 722, 758), as part of the global extinction of at least 88 related species at this time. The detailed record of withdrawal of these species differs by depth and geography in the Indian Ocean. In northwest Indian Ocean Site 722 (2045 m), the Extinction Group of 54 species comprised 2-15% of the benthic foraminiferal fauna in the earliest Pleistocene, but declined dramatically during the onset of the mid-Pleistocene Transition (MPT) at 1.2-1.1 Ma, with all but three species disappearing by the end of the MPT (~0.6 Ma). In northeast Indian Ocean Site 758 (2925 m), the Extinction Group of 44 species comprised 1-5% of the benthic foraminiferal fauna at ~3.3-2.6 Ma, but declined in abundance and diversity in three steps, at ~2.5, 1.7, and 1.2 Ma, with all but one species disappearing by the end of the MPT. At both sites there are strong positive correlations between the accumulation rate of the Extinction Group and proxies indicating low-oxygen conditions with a high organic carbon input. In both sites, there was a pulsed decline in Extinction Group abundance and species richness, especially in glacial periods, with some partial recoveries in interglacials. We infer that the glacial declines at the deeper Site 758 were a result of increased production of colder, well-ventilated Antarctic Bottom Water (AABW), particularly in the late Pliocene and during the MPT. The Extinction Group at shallower water depths (Site 722) were not impacted by the deeper water mass changes until the onset of the MPT, when cold, well-ventilated Glacial North Atlantic Intermediate Water (GNAIW) production increased and may have spread into the Indian Ocean. Increased chemical ventilation at various water depths since late Pliocene, particularly in glacial periods, possibly in association with decreased or more fluctuating organic carbon flux, might be responsible for the pulsed global decline and extinction of this rather specialised group of benthic foraminifera.