348 resultados para 670


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Distribution of Fe, Mn, Ti, Cu, Ni, Co, V, Cr, Mo, As in bottom sediments of a section from the Hawaiian Islands to the coast of Mexico. In the surface layer and isochronic layers of sediments from biogenic-terrigenous sediments of the Mexico coast to pelagic red clays of the Northeast Basin contents of all studied elements increase, and more sharply for mobile ones - Mn, Mo, Cu, Ni, Co, As. In near Hawaii sediments rich in coarsely fragmented volcanic-terrigenous and pyroclastic material of basalt composition enriched in Ti, Fe, Cr, V, P contents of these elements in surface sediments and in sediment mass increase and contents of Mn, Mo, Ni, Co, Cu, As (for the same reason) decrease compared to red clays. An area of hemipelagic and transition sediments is identified; these sediments have much higher contents of Mn, Fe, Cu, Ni, Mo, As, (Ba) than red clays and similar sediments of the Northwest Pacific Ocean. This is due to hydrothermal activity in the tectonically active zone at the northern extension of the East Pacific Rise. Similar character of distribution of the elements in the surface layer and in the isochrone layers of bottom sediments along the most part of the section is shown. Similarity between distribution of the elements in sediments of the western and the eastern parts of the Transpacific section is established.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Gangdese belt, Tibet, records the opening and closure of the Neo-Tethyan ocean and the resultant collision between the Indian and Eurasian plates. Mesozoic magmatic rocks generated through subduction of the Tethyan oceanic slab constitute the main component of the Gangdese belt, and play a crucial role in understanding the formation and evolution of the Neo-Tethyan tectonic realm. U-Pb and Lu-Hf isotopic data for tonalite and granodiorite from the Xietongmen-Nymo segment of the Gangdese belt indicate a significant pulse of Jurassic magmatism from 184 Ma to 168 Ma. The magmatic rocks belong to metaluminous medium-K calc-alkaline series, characterized by regular variation in major element compositions with SiO2 of 61.35%-73.59 wt%, low to moderate MgO (0.31%-2.59%) with Mg# of 37-45. These magmatic rocks are also characterized by LREE enrichment with concave upward trend in MREE on the chondrite-normalized REE patterns, and also LILE enrichment and depletion in Nb, Ta and Ti in the primitive mantle normalized spidergrams. These rocks have high zircon ?Hf(t) values of + 10.94 to + 15.91 and young two-stage depleted mantle model ages (TDM2) of 192 Ma to 670 Ma. The low MgO contents and relatively depleted Hf isotope compositions, suggest that the granitoid rocks were derived from the partial melting of the juvenile basaltic lower crust with minor mantle materials injected. In combined with the published data, it is suggested that northward subduction of the Neo-Tethyan slab beneath the Lhasa terrane began by the Late-Triassic, which formed a major belt of arc-related magmatism.