238 resultados para 519.1
Resumo:
Two sealed borehole hydrologic observatories (CORKs) were installed in two active hydrogeochemical systems at the Costa Rica subduction zone to investigate the relationship between tectonics, fluid flow, and fluid composition. The observatories were deployed during Ocean Drilling Program (ODP) Leg 205 at Site 1253, ~ 0.2 km seaward of the trench, in the upper igneous basement, and at Site 1255, ~ 0.5 km landward of the trench, in the décollement. Downhole instrumentation was designed to monitor formation fluid flow rates, composition, pressure, and temperature. The two-year records collected by this interdisciplinary effort constitute the first co-registered hydrological, chemical, and physical dataset from a subduction zone, providing critical information on the average and transient state of the subduction thrust and upper igneous basement. The continuous records at ODP Site 1253 show that the uppermost igneous basement is highly permeable hosting an average fluid flow rate of 0.3 m/yr, and indicate that the fluid sampled in the basement is a mixture between seawater (~ 50%) and a subduction zone fluid originating within the forearc (~ 50%). These results suggest that the uppermost basement serves as an efficient pathway for fluid expelled from the forearc that should be considered in models of subduction zone hydrogeology and deformation. Three transients in fluid flow rates were observed along the décollement at ODP Site 1255, two of which coincided with stepwise increases in formation pressure. These two transients are the result of aseismic slip dislocations that propagated up-dip from the seismogenic zone over the course of ~ 2 weeks terminating before reaching ODP Site 1255 and the trench. The nature and temporal behavior of strain and the associated hydrological response during these slow slip events may be an analog for the response of the seaward part of the subduction prism during or soon after large subduction zone earthquakes.
Resumo:
The composition and abundance of algal pigments provide information on phytoplankton community characteristics such as photoacclimation, overall biomass and taxonomic composition. In particular, pigments play a major role in photoprotection and in the light-driven part of photosynthesis. Most phytoplankton pigments can be measured by high-performance liquid chromatography (HPLC) techniques applied to filtered water samples. This method, as well as other laboratory analyses, is time consuming and therefore limits the number of samples that can be processed in a given time. In order to receive information on phytoplankton pigment composition with a higher temporal and spatial resolution, we have developed a method to assess pigment concentrations from continuous optical measurements. The method applies an empirical orthogonal function (EOF) analysis to remote-sensing reflectance data derived from ship-based hyperspectral underwater radiometry and from multispectral satellite data (using the Medium Resolution Imaging Spectrometer - MERIS - Polymer product developed by Steinmetz et al., 2011, doi:10.1364/OE.19.009783) measured in the Atlantic Ocean. Subsequently we developed multiple linear regression models with measured (collocated) pigment concentrations as the response variable and EOF loadings as predictor variables. The model results show that surface concentrations of a suite of pigments and pigment groups can be well predicted from the ship-based reflectance measurements, even when only a multispectral resolution is chosen (i.e., eight bands, similar to those used by MERIS). Based on the MERIS reflectance data, concentrations of total and monovinyl chlorophyll a and the groups of photoprotective and photosynthetic carotenoids can be predicted with high quality. As a demonstration of the utility of the approach, the fitted model based on satellite reflectance data as input was applied to 1 month of MERIS Polymer data to predict the concentration of those pigment groups for the whole eastern tropical Atlantic area. Bootstrapping explorations of cross-validation error indicate that the method can produce reliable predictions with relatively small data sets (e.g., < 50 collocated values of reflectance and pigment concentration). The method allows for the derivation of time series from continuous reflectance data of various pigment groups at various regions, which can be used to study variability and change of phytoplankton composition and photophysiology.
Resumo:
During expedition 202 of research vessel SONNE in 2009, 39 sea-floor surface sediments were sampled over a wide area across the North Pacific and the Bering Sea, which are well suited as reference archives of modern environmental processes. In this study, we used the samples to infer the documentation of land-ocean linkages of terrigenous sediment supply. We followed an integrated approach of grain-size analysis, bulk mineralogy, and clay mineralogy in combination with statistical data evaluation (end-member modelling of grain-size data, fuzzy-cluster analysis of mineralogical data), in order to identify the significant sources and modes of sediment transport in an overregional context. We also compiled literature data on clay mineralogy and updated those with the new data. Today, two processes of terrigenous sediment supply prevail in the study area: far-distant aeolian sediment supply to the pelagic North Pacific as well as hemipelagic sediment dispersal from nearby land sources by ocean currents along the continental margins and island arcs of the study area. The aeolian particles show the finest grain sizes (clay and fine silt), while the hemipelagic sediments have high abundances of sortable silt, particles >10 microns.
Resumo:
The Ocean Drilling Program Leg 126 sites may be classified into two categories depending on the presence (Group I: Sites 787, 792, and 793) or absence (Group II: Sites 788, 790, and 791) of steep concentration gradients. Shipboard X-ray diffraction analyses of bulk sediments from Group I sites revealed the presence of a number of diagenetic minerals (some of which are incompatible), but no systematic diagenetic zonation. The results of the chemical analyses of the pore waters from Group I have been used to estimate the activities of dissolved species. Thermodynamic analyses of the composition of the pore waters and the stability of authigenic minerals (gypsum, zeolites, feldspars, smectites, chlorites, and micas) show that the pore waters are close to equilibrium with most of the observed phases. Thus, only a small perturbation of the system (substitution in minerals and fluctuations in pore-water composition, in particular, in pH and SiO2 activity) will cause any of these phases to precipitate. Therefore, one would not expect mineralogical observations to show systematic vertical zonations at these sites. It is suggested that chlorites and high-temperature zeolites are not diagenetic sensu stricto, but were eroded from volcaniclastic highs. The absence of concentration gradients at the Group II sites has been analyzed in terms of reaction kinetics, hydrothermal advection, and temperature distribution. The absence of diagenetic imprints on the pore-water concentration profiles at these sites is probably caused by the slow nucleation of silica phases.