232 resultados para 1995_04030257 TM-73 4502610


Relevância:

20.00% 20.00%

Publicador:

Resumo:

DSDP Leg 73 sediment cores allow direct calibrations of magnetostratigraphy and biostratigraphy for much of the latest Cretaceous to Cenozoic in the mid-latitude South Atlantic Ocean. A complete record of the Cenozoic was not obtained, however, because strong dissolution, poor core recovery and intense core disturbance have masked the biostratigraphy or magnetostratigraphy over some intervals of all recovered sections. DSDP Leg 73 results show the following correlations: Early/middle Miocene in Chron 16 Oligocene/Miocene within Subchron C6CN Eocene/Oligocene within Subchron C13R Middle/late Eocene top of Chron C17 Early/late Paleocene top of Subchron C27N Cretaceous/Tertiary within Subchron C29R

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the South Atlantic, at Sites 519 to 523, the dissolution of calcareous oozes ended in the formation of red clays rich in iron and manganese. The early authigenesis of manganese oxides and clays is described in Miocene marly calcareous oozes. The mineralogical and geochemical influences of basaltic basement weathering are shown by the occurrence of palagonite, authigenic clays, and oxides in the basal sediments. The development of red clay facies can be inhibited by local topographic and paleoceanographic changes, as at Site 520.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The magnetic stability and mean intensity of the natural remanent magnetization (NRM) of Leg 73 sediments (Holes 519 to 523) decreases with the age of the sediment. We demonstrate that these variations are linked with physical and chemical changes in the magnetic grains themselves. Alteration of the magnetic component occurs most rapidly shortly after deposition. A significant magnetic alteration over the topmost few meters of the sediments is thought to be the result of oxidation. The modification of the NRM characteristics through the partial dissolution of the carbonate is largely accounted for by the effects of concentraion of the magnetic minerals. We apply the techniques of rock-magnetism and X-ray fluorescence analysis to clarify the physical and chemical mechanisms that affect the magnetic character of the sediment.