249 resultados para 1995_01230707 TM-43 4302003
Resumo:
The book is devoted to comprehensive study of composition of sediments from the North Pacific Ocean. The sediments have been divided characterized by their lithologic and facial types, grain size composition and mineralogy. Influence of volcanism on formation of mineral and chemical composition of these sediments has been shown. Regularities of distribution of sediment accumulation rates and of a number of chemical elements on the Transpacific profile have been found. Determining role of mechanical fractionation in their localization has been shown.
Resumo:
Altered basalt dikes from Hole 504B were partially melted at 1150°C and 1180°C to determine the composition of the first melts as oceanic Layer 2C is assimilated by a magma chamber. The partial melts are chemically similar to actinolite, the most abundant secondary mineral, but the melts are not simply melted actinolite. High TiO2, P2O5, and K2O abundances of the melts indicate that minor secondary minerals that are enriched in these elements also contribute to the melt. The incorporation of partial melts into a ridge-crest magma chamber may explain the local variability that is sometimes found in ocean ridge basalts that are not readily explained fractional crystallization or partial melting.
Resumo:
The major-element and most of the trace-element data from the different laboratories that contributed to the study of samples recovered during Leg 82 are presented in the following tables. The different basalt groups, identified on the basis of their chemical properties (major and trace elements), were defined from the data available on board the Glomar Challenger as the cruise progressed (see site chapters, all sites, this volume). Most of the data obtained since the end of the cruise and presented in these tables confirm the classification that was proposed by the shipboard party (see site chapters, all sites, this volume). Nevertheless, special mention should be made about Site 564. The shipboard party proposed a single chemical group at this site but noticed significant variations down the hole, mainly in trace-element data. However, the range of variation was small compared to the precision of the measurements. These variations were confirmed by the onshore studies (see papers in Part IV of this volume, especially Brannon's paper, partly devoted to this topic).
Resumo:
The monograph summarizes results of petrological and geochemical studies of rocks from the ocean floor collected by the authors during expeditions to the Central Atlantic. Detailed work in the Capa Verde transform fault zone gave a large amount of new information about magmatic and hydrothermal systems of the Mid-Atlantic Ridge.
Resumo:
Rare earth element (REE), major, and trace element abundances and relative fractionations in forty nodular cherts sampled by the Deep Sea Drilling Project (DSDP) and Ocean Drilling Program (ODP) indicate that the REE composition of chert records the interplay between terrigenous sources and scavenging from the local seawater. Major and (non-REE) trace element ratios indicate that the aluminosilicate fraction within the chert is similar to NASC (North American Shale Composite), with average Pacific chert including ~7% NASC-like particles, Indian chert ~11% NASC, Atlantic chert ~17% NASC, and southern high latitude (SHL) chert 53% NASC. Using La as a proxy for sum REE, approximations of excessive La (the amount of La in excess of that supplied by the detrital aluminosilicate fraction) indicate that Pacific chert contains the greatest excessive La (85% of total La) and SHL chert the least (38% of total La). As shown by interelement associations, this excessive La is most likely an adsorbed component onto aluminosilicate and phosphatic phases. Accordingly, chert from the large Pacific Ocean, where deposition occurs relatively removed from significant terrigenous input, records a depositional REE signal dominated by adsorption of dissolved REEs from seawater. Pacific chert Ce/Ce* <<1 and normative La/Yb ~ 0.8-1, resulting from adsorption of local Ce-depleted seawater and preferential adsorption of LREEs from seawater (e.g., normative La/Yb ~0.4), which increases the normative La/Yb ratio recorded in chert. Chert from the Atlantic basin, a moderately sized ocean basin lined by passive margins and with more terrigenous input than the Pacific, records a mix of adsorptive and terrigenous REE signals, with moderately negative Ce anomalies and normative La/Yb ratios intermediate to those of the Pacific and those of terrigenous input. Chert from the SHL region is dominated by the large terrigenous input on the Antarctic passive margin, with inherited Ce/Ce* ~1 and inherited normative La/Yb values of ~1.2-1.4. Ce/Ce* does not vary with age, either throughout the entire data base or within a particular basin. Overall, Ce/Ce* does not correlate with P2O5 concentrations, even though phosphatic phases may be an important REE carrier.
Resumo:
New data on elemental composition of particulate matter from the North Dvina River are presented. In May (period of snowmelt flood) it is similar to the upper layer of the continental crust due to active erosion of crust material in the catchment area. In August (summer low water period) impact of biogenic components increases and elevated concentrations of Cd, Sb, Mn, Zn, Pb, and Cu are observed. At other seasons no significant increase in heavy and rare earth element concentrations is observed.