718 resultados para 113-690


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The southernmost record of Maestrichtian pelagic carbonate sedimentation was recovered from ODP Leg 113 Holes 689B and 690C, drilled on the Maud Rise in the eastern Weddell Sea sector of the Southern Ocean (65°S). Well preserved and abundant planktonic foraminifers occur throughout Maestrichtian cores from both holes, providing a nearly complete biogeographic and biostratigraphic history of this region. Diversity is low compared to tropical and subtropical assemblages, with a maximum within sample diversity of 16 planktonic foraminifer species and a diversity total for the Maestrichtian of 24 species. The assemblages are dominated throughout by Heterohelix, Globigerinelloides, and a new species of Archaeoglobigerina, whereas keeled taxa are completely absent from the lower Maestrichtian and rare in the middle through upper Maestrichtian sediments. Three planktonic foraminifer species are described as new and are recognized as being endemic to the Austral Province. These include Archaeoglobigerina australis n. sp., Hedbergella sliteri n. sp., and Archaeoglobigerina mateola n. sp. The former two species were previously illustrated in reports on Late Cretaceous foraminifers from the Falkland Plateau and the northern Antarctic Peninsula. Two keeled and five non-keeled planktonic foraminifers, previously not found in high latitude Maestrichtian sediments, first appeared at the Maud Rise during the late early and late Maestrichtian. Correlation with their stratigraphic ranges in low latitude sequences shows that their first appearance datums are considerably younger at the Maud Rise than in the lower latitudes. The most likely explanation for this observation is that there was a warming in the south polar region during the late early and late Maestrichtian and a concomitant poleward migration of stenothermal taxa. However, oxygen isotopic paleotemperature results from Sites 689 and 690 (Barrera and Huber, 1990, doi:10.2973/odp.proc.sr.113.137.1990) show a long-term cooling trend throughout the Maestrichtian, indicating that other factors may have played a more important role than temperature in the distribution of Maestrichtian planktonic foraminifers. A new biostratigraphic scheme is proposed for the Antarctic because of the absence of thermophilic planktonic foraminifers used to identify existing low to middle latitude zones. The Globigerinelloides impensus Partial Range Zone is defined for the late Campanian-Maestrichtian, the Globotruncanita havanensis Partial Range Zone is redefined for the early to late early Maestrichtian, and the Abathomphalus mayaroensis Total Range Zone is recognized. Good quality magnetic polarity data obtained from both Maud Rise sites (Hamilton, 1990, doi:10.2973/odp.proc.sr.113.179.1990) enables magnetobiostratigraphic correlation of twelve foraminifer datums with the geomagnetic polarity time scale of Haq et al. (1987). The geochronology thus obtained is crucial for accurate cross-latitudinal correlation and interpretation of the paleoceanographic history of the Antarctic region during the Maestrichtian time period.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantitative analysis of upper Eocene-upper Oligocene calcareous nannofossil assemblages from five Ocean Drilling Program sites in the Atlantic and Indian Ocean sectors of the Southern Ocean reveals an abrupt increase in cool-water taxa at the top of magnetic Subchron C13R ca. 35.9 Ma, coincident with an enrichment of ~1? d18O in the planktonic foraminifers at these sites. The synchrony of the abrupt increase in cool-water taxa in the Southern Ocean renders this event a useful biostratigraphic datum at southern high latitudes. This earliest Oligocene cool-water taxa increase was the sharpest and largest during the late Eocene-late Oligocene interval and indicates a drop in surface-water temperature of more than 3°C in the Southern Ocean. This suggests that the earliest Oligocene d18O shift represents primarily a temperature signal; a small portion (~0.2?) is attributable to a global ice-volume increase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a study of ODP Hole 689B no iridium (Ir) anomaly was found in Sections 1 through 6 of Core 25X or in Core 26X from the top down to section 2, 3-12 cm. The background Ir abundance averaged 11 parts per trillion (ppt) and a clay-enriched region had nearly the same average, 26 ± 12 ppt. If the Cretaceous-Tertiary (K-T) contact is in the region studied, then sedimentation was not continuous, and the K-T boundary was probably either not deposited or it was eroded away. In a study of Cores 15X and 16X of ODP Hole 690C, an iridium peak with a maximum abundance of 1566 ± 222 ppt was found in Section 4 of Core 15X at 39-40 cm with a half-width of 6.6 cm. Background abundances were ~15 ppt and distinctly higher Ir abundances were observed from 119 cm below to 72 cm above the main peak. The Ir distribution below the main peak is attributed to bioturbation by organisms with burrows extending at least 0.4 m. The Ir distribution above the main peak may be due to the same cause but other explanations may be significant. There are variable enrichments of clay in the mainly CaCO3 sediment of Core 15X, and the stratigraphically lowest part of the most abundant clay deposits is found (within 2 cm) in the same position as the main Ir peak. The clay deposit, which is estimated to be about 50% of the sediment, extends upward ~19 cm and then slowly decreases to a background level of 10% over 1 m. The degree of homogeneity of the clay-rich interval suggests it was not due to episodic volcanism but may have been due to a decrease of the CaCO3 deposition rate which was possibly triggered by the impact of a large asteroid or comet on the Earth.