648 resultados para inductively coupled plasma methods
Resumo:
The study was inspired by information on Paleozoic andesites, dacites, and diabases on the Belkovsky Island in the 1974 geological survey reports used to reconstruct tectonic evolution of the continental block comprising the New Siberian Islands and the bordering shelf. We did not find felsic volcanics or Middle Paleozoic intrusions in the studied area of the island. Igneous rocks are mafic subvolcanic intrusions including dikes, randomly shaped bodies, explosion breccias, and peperites. They belong to the tholeiitic series and are similar to Siberian traps in petrography and trace-element compositions, with high LREE and LILE and prominent Nb negative anomalies. The island arc affinity is due to continental crust contamination of mantle magma and its long evolution in chambers at different depths. K-Ar biotite age (252+/-5 Ma) of magmatism indicates that it was coeval to the main stage of trap magmatism in the Siberian craton at the Permian-Triassic boundary. The terrane including the New Siberian Islands occurred on the periphery of the Siberian trap province where magmatism acted in rifting environment. Magma intruded into semiliquid wet sediments at shallow depths shortly after their deposition. Therefore, the exposed Paleozoic section in Belkovsky Island may include Permian or possibly Lower Triassic sediments of younger ages than it was believed earlier.
Resumo:
Here we present a high-resolution faunal, floral and geochemical (stable isotopes and trace elements) record from the sediments of Ocean Drilling Program Site 963 (central Mediterranean basin), which shows centennial/millennial-scale resemblance to the high-northern latitude rapid temperature fluctuations documented in the Greenland ice cores between 20 and 70 kyr BP. Oxygen and carbon isotopes, planktic foraminifera and calcareous nannofossil distributions suggest that Dansgaard-Oeschger (D/O) and Heinrich events (HE) are distinctly expressed in the Mediterranean climate record. Moreover, recurrent though subdued oscillations not previously identified in the Lateglacial Mediterranean sediments document a significant centennial-scale climate variability in the basin that is greater than previously thought. Alternations between climate regimes dominated by polar outbreaks during D/O stadials and warm D/O interstadials, with associated intensification of continental runoff, are well expressed in the ODP Site 963. These place the Mediterranean basin as an often overlooked recorder of the interplay between large- and regional- scale climate controls at intermediate latitudes, and of the possible interactions between different components of the climate system. Significant changes in Ba/Ca values measured in Globigerinoides ruber shells from a number of D/O stadials and interstadials suggest enhanced freshwater input from the north-eastern Mediterranean borderland during the D/O interstadials. However, the short duration of 3D stratification events never led to complete oxygen consumption along the water column, but clear effects of sluggish 3D circulation in the basin are testified to by negative excursions in d13C measured in selected species of planktic and benthic foraminifera. HEs are constantly associated with lightening in the d18O record of planktic foraminifera, possibly because of the impact of iceberg melting in the Iberian Margin on Mediterranean thermohaline circulation. Interestingly, in two cases in particular, HE2 and HE5, fresher water inputs also affected deeper horizons of intermediate waters, suggesting a basin-wide impact.
Resumo:
Two bottom sediment cores (BP00-23/7 and BP00-7/6) recovered from the Yenisei transect in the southern Kara Sea are described. Data on their grain size composition, clay and heavy mineral assemblages, and distribution of a large group of chemical elements are presented. Radiocarbon dates based on AMS C-14 method suggest the Holocene age of sediments in the cores. Literature data on physical properties and foraminifers have also been analyzed. The facies affiliation of the lithostratigraphic subdivisions has been unraveled. History of the Yenisei River runoff in the Holocene has been reconstructed on the basis of different indicators.
Resumo:
Atmospheric trace element concentrations were measured from March 1999 through December 2003 at the Air Chemistry Observatory of the German Antarctic station Neumayer by inductively coupled plasma - quadrupol mass spectrometry (ICP-QMS) and ion chromatogra-phy (IC). This continuous five year long record derived from weekly aerosol sampling re-vealed a distinct seasonal summer maximum for elements linked with mineral dust entry (Al, La, Ce, Nd) and a winter maximum for the mostly sea salt derived elements Li, Na, K, Mg, Ca, and Sr. The relative seasonal amplitude was around 1.7 and 1.4 for mineral dust (La) and sea salt aerosol (Na), respectively. On average a significant deviation regarding mean ocean water composition was apparent for Li, Mg, and Sr which could hardly be explained by mir-abilite precipitation on freshly formed sea ice. In addition we observed all over the year a not clarified high variability of element ratios Li/Na, K/Na, Mg/Na, Ca/Na, and Sr/Na. We found an intriguing co-variation of Se concentrations with biogenic sulfur aerosols (methane sul-fonate and non-sea salt sulfate), indicating a dominant marine biogenic source for this element linked with the marine biogenic sulfur source.
Resumo:
Deep-sea sediment Ba* (Ba/Al2O3(sample) * 15% - Ba(aluminosilicate) records show increasing values synchronous with the evolution of the late Paleocene global d13C maximum, reflecting an increase in marine surface primary production and biogenic barite formation at this time. At two oligotrophic locations, Deep Sea Drilling Project (DSDP) Sites 384 and 527 in the North and South Atlantic, respectively, Ba* increases from 160-360 ppm in the early Paleocene to 1100-3000 ppm during the d13C maximum. At equatorial DSDP Site 577, positioned within or near the high-productivity zone, Ba* increases from ~15,500 ppm in the early Paleocene to ~25,400 ppm in conjunction with late Paleocene maximum d13C values. Linear fitted correlation plots of sediment Ba* content versus surface water d13C in all three regions support barite originating in the euphotic zone. The early to late Paleocene relative increase in Ba* illustrates how burial rates of Corg (relative to Al2O3) accelerated by a factor of ~1.8 and ~6.0 in the eutrophic and oligotrophic areas, respectively. A tentative estimate, weighing our result for the entire ocean, suggests that accumulation rates of organic carbon increased by a factor of 2 during the late Paleocene d13C maximum.
Resumo:
Interstitial water samples from Sites 834 through 839, drilled during Ocean Drilling Program Leg 135 in the backarc Lau basin (Southwestern Pacific), have been analyzed for major elements, manganese, copper, strontium, barium, vanadium, and 87Sr/86Sr isotopic composition values. The concentration-depth profiles of the major chemical components show almost straight concentration gradients at all sites, and seem to reflect slight alteration of volcanic material. However, in the lower part of the sedimentary cover, where volcanogenic material is abundant and where diagenetic minerals occur, systematic decreases in calcium, strontium, manganese, copper, and vanadium concentrations are observed. A downwelling flow of bottom seawater, which affected the diagenetic chemical signature of the interstitial water, is probably responsible for the recorded chemical features. This hypothesis is supported by strontium isotope data obtained from interstitial water samples at Site 835. It is also in accordance with data from heat flow and physical properties.
Resumo:
This thesis examines the closure history of the Central American Seaway (CAS) and its effect on changes in ocean circulation and climate during the time interval from ~6 - 2.5 Ma. It was accomplished within the DFG Research Unit "Impact of Gateways on Ocean Circulation, Climate and Evolution" at the University of Kiel. Proxy records from Ocean Drilling Program (ODP) Sites 999 and 1000 (Caribbean), and from ODP Sites 1237, 1239 and 1241 (low-latitude east Pacific) are developed and examined. In addition, previously established proxy data from Atlantic Sites 925/926 (Ceara Rise) and 1006 (western Great Bahama Bank) and from two east Pacific sites (851, 1236) are included for interpretations. The main objectives of this study are (1) to acquire a consistent stratigraphic framework for all sites, (2) to reconstruct Pliocene changes in Caribbean and tropical east Pacific upper ocean water masses (i.e. temperature, salinity, thermocline depth), and (3) to identify potential underlying forcing mechanisms.
Resumo:
Pioneer information about chemical composition of river waters in the Wrangel Island has been obtained. It is shown that water composition reflects the lithogeochemical specifics of primary rocks and ore mineralization. In contrast to many areas of the Russian Far North river waters of the island are characterized by elevated background value of total mineralization (i.e., total dissolved solids, TDS) (0.3-2 g/l) and specific chemical type (SO4-Ca-Mg). This is related to abundance of Late Carboniferous gypsiferous and dolomitic sequences in the mountainous area of the island. It has also been established that salt composition of some streams is appreciably governed by supergene alterations of sulfide mineralization associated with quartz-carbonate vein systems. They make up natural centers of surface water contamination. Waters in such streams are characterized by low pH values (2.4-5.5), high TDS (up to 6-23 g/l) and SO4-Mg composition. These waters are also marked by anomalously high concentrations of heavy and non-ferrous metals, as well as REE, U, and Th.
Resumo:
Analysis of pelagic clay samples from Sites 576, 578, and 581 shows that physical, acoustic, and electrical trends with increasing burial depth are related to mineralogical and diagenetic changes. The properties of interest are bulk density (roo), porosity (phi), compressional-wave velocity (Vp) and velocity anisotropy (Ap), and electrical resistivity (Ro) and resistivity anisotropy (Ar). In general, as demonstrated in particular for the brown pelagic clay, the increase in roo, Vp, Ro, and to a lesser extent Ap and Ar with increasing depth is primarily caused by decreasing phi (and water content) as a result of compaction. The mineralogy and chemistry of the pelagic clays vary as a function of burial depth at all three sites. These variations are interpreted to reflect changes in the relative importance of detrital and diagenetic components. Mineralogical and chemical variations, however, play minor roles in determining variations in acoustic and electrical properties of the clays with increasing burial depth.
Resumo:
Deep Sea Drilling Project Site 480 (27°54.10'N, 111°39.34'W; 655 m water depth) contains a high resolution record of paleoceanographic change of the past 15000 years for the Guaymas Basin, a region of very high diatom productivity within the central Gulf of California. Analyses of diatoms and silicoflagellates were completed on samples spaced every 40-50 yr, whereas ICP-AES geochemical analyses were completed on alternate samples (sample spacing 80-100 yr). The Bolling-Allerod interval (14.6-12.9 ka) (note, ka refers to 1000 calendar years BP throughout this report) is characterized by an increase in biogenic silica and a decline in calcium carbonate relative to surrounding intervals, suggesting conditions somewhat similar to those of today. The Younger Dryas event (12.9-11.6 ka) is marked by a major drop in biogenic silica and an increase in calcium carbonate. Increasing relative percentage contributions of Azpeitia nodulifera and Dictyocha perlaevis (a tropical diatom and silicoflagellate, respectively) and reduced numbers of the silicoflagellate Octactis pulchra are supportive of reduced upwelling of nutrient-rich waters. Between 10.6 and 10.0 ka, calcium carbonate and A. nodulifera abruptly decline at DSDP 480, while Roperia tesselata, a diatom indicative of winter upwelling in the modern-day Gulf, increases sharply in numbers. A nearly coincident increase in the silicoflagellate Dictyocha stapedia suggests that waters above DSDP 480 were more similar to the cooler and slightly more saline waters of the northern Gulf during much of the early and middle parts of the Holocene (~10 to 3.2 ka). At about 6.2 ka a stepwise increase in biogenic silica and the reappearance of the tropical diatom A. nodulifera marks a major change in oceanographic conditions in the Gulf. A winter shift to more northwesterly winds may have occurred at this time along with the onset of periodic northward excursions (El Nino-driven?) of the North Equatorial Countercurrent during the summer. Beginning between 2.8 and 2.4 ka, the amplitude of biogenic silica and wt% Fe, Al, and Ti (proxies of terrigenous input) increase, possibly reflecting intensification of ENSO cycles and the establishment of modern oceanographic conditions in the Gulf. Increased numbers of O. pulchra after 2.8 ka suggest enhanced spring upwelling.
Resumo:
Behavior of rare earth elements (REE) was examined in oceanic phillipsites collected from four horizons of eupelagic clay in the Southwest Basin of the Pacific Ocean. REE concentrations were determined in >50 ?m size fraction phillipsite samples by the ICP-MS method. Composition of separate phillipsite aggregates was studied by electron microprobe and secondary ion mass-spectrometry. Rare earth elements in phillipsite samples are related to admixture of ferrocalcium hydroxophosphates. Analysis of separate phillipsite aggregates reveals low (<0.1-18.1 ppm) REE(III) concentrations. Ce concentration varies between 2.7 and 140 ppm. The correlation analysis shows that REE(III) present in admixture of iron oxyhydroxides in separate phillipsite aggregates. Based on the REE(III) concentration in iron oxyhydroxides we can identify two generations of phillipsite aggregates. Massive rounded aggregates (phillipsite I) are depleted in REE, while pseudorhombic (phillipsite II) aggregates are enriched in REE and marked by a positive Ce anomaly. Oceanic phillipsites do not accumulate REE or inherit the REE signature of volcaniclastic material and oceanic deep water. Hence, REE distribution in phillipsites does not depend on sedimentation rate and composition of host sediments.
Resumo:
Major element chemistry of basalt from the southern East Pacific Rise (EPR) is different from that of the EPR at the time of the formation of the Pacific Plate at 170 Ma.Glass recovered from Jurassic age (170 Ma) Pacific ocean crust (Bartolini and Larson, 2001, doi:10.1130/0091-7613(2001)029<0735:PMATPS>2.0.CO;2) at Ocean Drilling Program Hole 801C records higher Fe8 (10.77 wt%) and marginally lower Na8 (2.21 wt%) compared to the modern EPR, suggesting deeper melting and a temperature of initial melting that was 60°C hotter than today.Trace element ratios such as La/Sm and Zr/Y, on the other hand, show remarkable similarities to the modern southern EPR, indicating that Site 801 was not generated on a hotspot-influenced ridge and that mantle composition has changed little in the Pacific over the past 170 Ma. Our results are consistent with the observation that mid-ocean ridge basalts (MORBs) older than 80 Ma were derived by higher temperature melting than are modern MORBs (Humler et al., 1999, doi:10.1016/S0012-821X(99)00218-6), which may have been a consequence of the Cretaceous superplume event in the Pacific.Site 801 predates the formation of Pacific oceanic plateaus and 801C basalt chemistry indicates that higher temperatures of mantle melting beneath Pacific ridges preceded the initiation of the superplume.