236 resultados para absolute error


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new chemical procedure for cleaning marine carbonates was applied to remove detritus as well as metaloxide contaminations of marine shells from Eemian deposits and adjoining succession of a sediment core from Dagebüll, Schleswig- Holstein. Hence, one can significantly reduce the contamination with detrital uranium and thorium. Thermal ionisation mass spectrometry was applied to determine the uranium and thorium activities used for 230Th/U dating of these shells. At least ten samples of marine bivalves of five different core sections were analysed. Samples located below a five meter thick clay layer at 19-24 m yielded an average age of 132±18 ka. Shells located above the clays at 15-20 m depth were strongly influenced by percolating groundwaters of an open system. Therefore, a reliable dating of these samples was not possible.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigate the Logatchev Hydrothermal Field at the Mid-Atlantic Ridge, 14°45' N to constrain the calcium isotope hydrothermal flux into the ocean. During the transformation of seawater to a hydrothermal solution, the Ca concentration of pristine seawater ([Ca]_SW) increases from about 10 mM to about 32 mM in the hydrothermal fluid endmember ([Ca]_HydEnd) and thereby adopts a d44/40Ca_HydEnd of -0.95+/-0.07 per mil relative to seawater (SW) and a 87Sr/86Sr isotope ratio of 0.7034(4). We demonstrate that d44/40Ca_HydEnd is higher than that of the bedrock at the Logatchev field. From mass balance calculations, we deduce a d44/40Ca of -1.17+/-0.04 per mil (SW) for the host-rocks in the reaction zone and -1.45+/-0.05 per mil (SW) for the isotopic composition of the entire hydrothermal cell of the Logatchev field. The values are isotopically lighter than the currently assumed d44/40Ca for Bulk Earth of -0.92+/-0.18 per mil (SW) [Skulan J., DePaolo D. J. and Owens T. L. (1997) Biological control of calcium isotopic abundances in the global calcium cycle. Geochim. Cosmochim. Acta 61,(12) 2505-2510] and challenge previous assumptions of no Ca isotope fractionation between hydrothermal fluid and the oceanic crust [Zhu P. and Macdougall J. D. (1998) Calcium isotopes in the marine environment and the oceanic calcium cycle. Geochim. Cosmochim. Acta 62,(10) 1691-1698; Schmitt A. -D., Chabeaux F. and Stille P. (2003) The calcium riverine and hydrothermal isotopic fluxes and the oceanic calcium mass balance. Earth Planet. Sci. Lett. 6731, 1-16]. Here we propose that Ca isotope fractionation along the fluid flow pathway of the Logatchev field occurs during the precipitation of anhydrite. Two anhydrite samples from the Logatchev Hydrothermal Field show an average fractionation of about D44/40Ca = -0.5 per mil relative to their assumed parental solutions. Ca isotope ratios in aragonites from carbonate veins from ODP drill cores indicate aragonite precipitation directly from seawater at low temperatures with an average d44/40Ca of -1.54+/-0.08 per mil (SW). The relatively large fractionation between the aragonite precipitates and seawater in combination with their frequent abundance in weathered mafic and ultramafic rocks suggest a reconsideration of the marine Ca isotope budget, in particular with regard to ocean crust alteration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An Accelerator Mass Spectrometry (AMS) 14C dated multiparameter event stratigraphy is developed for the Aegean Sea on the basis of highly resolved (centimeter to subcentimeter) multiproxy data collected from four late glacial to Holocene sediment cores. We quantify the degree of proportionality and synchroneity of sediment accumulation in these cores and use this framework to optimize the confidence levels in regional marine, radiocarbon-based chronostratigraphies. The applicability of the framework to published, lower-resolution records from the Aegean Sea is assessed. Next this is extended into the wider eastern Mediterranean, using new and previously published high-resolution data from the northern Levantine and Adriatic cores. We determine that the magnitude of uncertainties in the intercore comparison of AMS 14C datings based on planktonic foraminifera in the eastern Mediterranean is of the order of ±240 years (2 SE). These uncertainties are attributed to synsedimentary and postsedimentary processes that affect the materials dated. This study also offers a background age control that allows for vital refinements to radiocarbon-based chronostratigraphy in the eastern Mediterranean, with the potential for similar frameworks to be developed for any other well-studied region.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Detailed quantitative analyses of selected calcareous nannofossil species were used to determine the placement of zonal boundaries. In Hole 667A in the equatorial Atlantic Ocean, Zones CP19 through CN5 were recognized, whereas at Site 574 in the equatorial Pacific Ocean, only the CN4/CN5 boundary could be determined. Boundaries were identified by sharp rises and declines in abundance at the beginnings and ends, respectively, of index fossil ranges. The sharp rise in abundance at the beginning of the range of Triquetrorhabdulus rugosus provided a good datum level in both regions; the same is true for the sharp decline in abundance at the end of the range of Cyclicargolithus floridanus. The last occurrence of Helicosphaera ampliaperta was used to mark the CN3/CN4 boundary in Hole 667A, while at Site 574, H. ampliaperta was absent. The abundance pattern of Triquetrorhabdulus carinatus obtained from Hole 667A makes it impossible to observe a distinct disappearance level. Age/depth plots reveal uniform sedimentation rates at both sites during early Miocene times. At Site 667 in the Atlantic the mean sedimentation rate was 14.90 m/m.y., and at Site 574 in the Pacific it was 16.17 m/m.y. during this same period. One new nannofossil species, Triquetrorhabdulus rioensis, is described; and one species, Triquetrorhabdulus serratus, is recombined.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Quaternary sediments were recovered at all five sites drilled during Ocean Drilling Program (ODP) Leg 189 in the Tasmanian Gateway. Two of these sites lie north of the present-day Subtropical Front (STF), and three sites lie south of the STF. Quaternary sediments recovered at Sites 1168, 1170, 1171, and 1172 were studied in detail to determine the calcareous nannofossil biostratigraphy and construct an age model for these sediments. The Pliocene/Pleistocene boundary was identified by the last occurrence (LO) of Discoaster brouweri at Site 1172 and approximated by the LO of Calcidiscus macintyrei at the other sites because of a lack of discoasterids. A hiatus encompassing the entire Helicosphaera sellii Zone was tentatively identified at Sites 1168 and 1172 by the coincident LOs of C. macintyrei and H. sellii. Similar hiatuses have been noted at ODP Site 1127 on the Great Australian Bight, Deep Sea Drilling Project Site 282 off the Tasman subcontinent, and ODP Site 1165 in Prydz Bay, Antarctica.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the nutrient-rich Southern Ocean, Fe is a vital constituent controlling the growth of phytoplankton. Despite much effort, the origin and transport of Fe to the oceans are not well understood. In this study we address the issue with geochemical data and Nd isotopic compositions of suspended particle samples collected from 1997 to 1999 in the South Atlantic Sector of the Southern Ocean. Al, Th, and rare earth element (REE) concentrations as well as 143Nd/144Nd isotopic ratios in acetic acid-leached particle samples representing the lithogenic fraction delineate three major sources: (1) Patagonia and the Antarctic Peninsula provide material with eNd > -4 that is transported toward the east with the polar and subpolar front jets, (2) the south African shelf, although its influence is limited by the circumpolar circulation and wind direction, can account for material with eNd of -12 to -14 adjacent to South Africa, and (3) East Antarctica provides material with eNd of -10 to -15 to the eastern Weddell Sea and adjacent Antarctic Circumpolar Current. For this region we interpret the Nd isotopic evidence in combination with oceanographic/atmospheric constraints as evidence for supply of significant amounts of terrigenous detritus by icebergs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hydrographers have traditionally referred to the nearshore area as the "white ribbon" area due to the challenges associated with the collection of elevation data in this highly dynamic transitional zone between terrestrial and marine environments. Accordingly, available information in this zone is typically characterised by a range of datasets from disparate sources. In this paper we propose a framework to 'fill' the white ribbon area of a coral reef system by integrating multiple elevation and bathymetric datasets acquired by a suite of remote-sensing technologies into a seamless digital elevation model (DEM). A range of datasets are integrated, including field-collected GPS elevation points, terrestrial and bathymetric LiDAR, single and multibeam bathymetry, nautical chart depths and empirically derived bathymetry estimations from optical remote sensing imagery. The proposed framework ranks data reliability internally, thereby avoiding the requirements to quantify absolute error and results in a high resolution, seamless product. Nested within this approach is an effective spatially explicit technique for improving the accuracy of bathymetry estimates derived empirically from optical satellite imagery through modelling the spatial structure of residuals. The approach was applied to data collected on and around Lizard Island in northern Australia. Collectively, the framework holds promise for filling the white ribbon zone in coastal areas characterised by similar data availability scenarios. The seamless DEM is referenced to the horizontal coordinate system MGA Zone 55 - GDA 1994, mean sea level (MSL) vertical datum and has a spatial resolution of 20 m.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using the concept of 'orbital tuning', a continuous, high-resolution deep-sea chronostratigraphy has been developed spanning the last 300,000 yr. The chronology is developed using a stacked oxygen-isotope stratigraphy and four different orbital tuning approaches, each of which is based upon a different assumption concerning the response of the orbital signal recorded in the data. Each approach yields a separate chronology. The error measured by the standard deviation about the average of these four results (which represents the 'best' chronology) has an average magnitude of only 2500 yr. This small value indicates that the chronology produced is insensitive to the specific orbital tuning technique used. Excellent convergence between chronologies developed using each of five different paleoclimatological indicators (from a single core) is also obtained. The resultant chronology is also insensitive to the specific indicator used. The error associated with each tuning approach is estimated independently and propagated through to the average result. The resulting error estimate is independent of that associated with the degree of convergence and has an average magnitude of 3500 yr, in excellent agreement with the 2500-yr estimate. Transfer of the final chronology to the stacked record leads to an estimated error of +/-1500 yr. Thus the final chronology has an average error of +/-5000 yr.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The South Pacific is a sensitive location for the variability of the global oceanic thermohaline circulation given that deep waters from the Atlantic Ocean, the Southern Ocean, and the Pacific Basin are exchanged. Here we reconstruct the deep water circulation of the central South Pacific for the last two glacial cycles (from 240,000 years ago to the Holocene) based on radiogenic neodymium (Nd) and lead (Pb) isotope records complemented by benthic stable carbon data obtained from two sediment cores located on the flanks of the East Pacific Rise. The records show small but consistent glacial/interglacial changes in all three isotopic systems with interglacial average values of -5.8 and 18.757 for epsilon Nd and 206Pb/204Pb, respectively, whereas glacial averages are -5.3 and 18.744. Comparison of this variability of Circumpolar Deep Water (CDW) to previously published records along the pathway of the global thermohaline circulation is consistent with reduced admixture of North Atlantic Deep Water to CDW during cold stages. The absolute values and amplitudes of the benthic delta13C variations are essentially indistinguishable from other records of the Southern Hemisphere and confirm that the low central South Pacific sedimentation rates did not result in a significant reduction of the amplitude of any of the measured proxies. In addition, the combined detrital Nd and strontium (87Sr/86Sr) isotope signatures imply that Australian and New Zealand dust has remained the principal contributor of lithogenic material to the central South Pacific.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The signature of Dansgaard-Oeschger events - millennial-scale abrupt climate oscillations during the last glacial period - is well established in ice cores and marine records (Labeyrie, 2000, doi:10.1126/science.290.5498.1905; Blunier and Brook, 2001, doi:10.1126/science.291.5501.109: Bond et al., 2001, doi:10.1126/science.1065680). But the effects of such events in continental settings are not as clear, and their absolute chronology is uncertain beyond the limit of 14C dating and annual layer counting for marine records and ice cores, respectively. Here we present carbon and oxygen isotope records from a stalagmite collected in southwest France which have been precisely dated using 234U/230Th ratios. We find rapid climate oscillations coincident with the established Dansgaard-Oeschger events between 83,000 and 32,000 years ago in both isotope records. The oxygen isotope signature is similar to a record from Soreq cave, Israel (Bar-Mathews et al., 2000, doi:10.1016/S0009-2541(99)00232-6), and deep-sea records (Bond et al., 1993, doi:10.1038/365143a0; Shackleton and Hall, 2001, doi:10.1029/2000PA000513), indicating the large spatial scale of the climate oscillations. The signal in the carbon isotopes gives evidence of drastic and rapid vegetation changes in western Europe, an important site in human cultural evolution. We also find evidence for a long phase of extremely cold climate in southwest France between 61.2 +/-0.6 and 67.4 0.9 kyr ago.