412 resultados para Water masses
Resumo:
Dinoflagellate cysts were studied in 42 samples from surface sediments of the White Sea. Total concentration of dinocysts varies from single cysts to 25000 cyst/g of dry sediments, which reflects biological productivity in White Sea waters and regional particular features of sedimentation processes. The highest concentrations are observed in silts; they are related to the regions of propagation of highly productive Barents Sea waters in the White Sea. Generally, spatial distribution of dinocyst species in the surface sediments corresponds to distribution of the major types of water masses in the White Sea. Cysts of relatively warm-water species (Operculodinium centrocarpum, Spiniferites sp.) of North Atlantic origin that dominate in the sediments indicate an intensive intrusion of Barents Sea water masses to the White Sea along with hydrological dwelling conditions in the White Sea favorable for development of these species during their vegetation period. The cold-water dinocyst assemblage (Islandinium minutum, Polykrikos sp.) is rather strictly confined to inner parts of shallow-water bays, firstly, those adjacent to the Onega and Severnaya Dvina river mouths.
Resumo:
Leg 90 of the Deep Sea Drilling Project drilled 18 holes at eight sites (Sites 587-594) on several shallow-water platforms in the southern Coral Sea, Tasman Sea, and southwestern Pacific Ocean. The results from an additional hole (Hole 586B) drilled at Site 586 during Leg 89 are included in this report. Together, these sites form a latitudinal traverse which extends from the equator (Site 586) to 45°S (Site 594) and includes all the major water masses from tropical to subantarctic. Samples recovered at these sites range in age from middle Eocene to late Quaternary. The calcareous nannoplankton biostratigraphy for Leg 90 has divided into two parts: part 1, the Neogene and Quaternary of Sites 586-594. (this chapter); and part 2, the Paleogene of Sites 588, 592, and 593 (Martini, 1986). A slightly modified version of the Martini (1971) standard Tertiary and Quaternary zonation scheme was used to make age determinations on over 700 samples. All of the relevant Neogene and Quaternary zone-defining nannoplankton are present at Sites 586-591 (0°-30°S) but become increasingly rare or are absent at Sites 592-594 (35°-45°S). Species diversity increases southward from the equator (Site 586) and reaches a peak at 20°S (Site 587). A decrease at 25°S (Site 588) and 30°S (Sites 589-591) is followed by an increase in species diversity at 35°S (Site 592). South of 35°S, species diversity again decreases and reaches a low at 45 °S (Site 594). Species diversity for all sites as a group generally increases through the early, middle, and late Miocene, reaches a peak in the early Pliocene, then gradually decreases through the late Pliocene and Quaternary
Resumo:
The Quaternary benthic foraminifers from Leg 95 Sites 612 and 613 were examined with respect to paleoceanographic trends. Data from the two sites indicate the presence of markedly different bottom-water masses, during both glacial and interglacial periods. The dominant interglacial species at Site 612 is Uvigerinct peregrina, which is barely present in corresponding intervals at Site 613. Dominant glacial species are Elphidium excavatum and Cassidulina reniforme at Site 612 and Epistominella takayanagii at Site 613.
Resumo:
Localized open-ocean low-oxygen dead-zones in the tropical Northeast Atlantic are recently discovered ocean features that can develop in dynamically isolated water masses within cyclonic eddies (CE) and anticyclonic modewater eddies (ACME). Analysis of a comprehensive oxygen dataset obtained from gliders, moorings, research vessels and Argo floats revealed that eddies with low oxygen concentrations at 50-150 m depths can be found in surprisingly high numbers and in a large area (from about 4°N to 22°N, from the shelf at the eastern boundary to 38°W). Minimum oxygen concentrations of about 9 µmol kg-1 in CEs and severely suboxic concentrations (< 1 µmol kg-1) in ACMEs were observed. In total, 173 profiles with oxygen concentrations below the minimum background concentration of 40 µmol kg-1 could be associated with 27 independent "dead-zone" eddies (10 CEs; 17 ACMEs) over a period of 10 years. The eddies' oxygen minimum is located in the eddy core beneath the mixed layer at a mean depth of 80 m. Compared to the surrounding waters, the mean oxygen anomaly between 50 and 150 m depth for CEs (ACMEs) is -38 (-79) µmol kg-1. The low oxygen concentration right beneath the mixed layer has been attributed to the combination of high productivity in the eddies' surface waters and the isolation of their cores with respect to lateral oxygen supply. Indeed, eddies of both types feature a cold sea surface temperature anomaly and enhanced chlorophyll concentrations in their center. The locally increased consumption within these eddies represents an essential part of the total consumption in the open tropical Northeast Atlantic Ocean and might be partly responsible for the formation of the shallow oxygen minimum zone. Eddies south of 12°N carry weak hydrographic anomalies in their cores and seem to be generated in the open ocean away from the boundary. North of 12°N, eddies of both types carry anomalously low salinity water of South Atlantic Central Water origin from the eastern boundary upwelling region into the open ocean. Water mass properties and satellite eddy tracking both point to an eddy generation near the eastern boundary.
Resumo:
The Danubs 2001 dataset contains zooplankton data collected in March, June, September and October 2001 in 11 station allong 5 transect in front of the Romanian littoral. Zooplankton sampling was undertaken at 11 stations where samples were collected using a Juday closing net in the 0-10, 10-25, and 25-50m layer (depending also on the water masses). The dataset includes samples analysed for mesozooplankton species composition and abundance. Sampling volume was estimated by multiplying the mouth area with the wire length. Taxon-specific mesozooplankton abundance was count under microscope. Total abundance is the sum of the counted individuals. Total biomass Fodder, Rotifera , Ctenophora and Noctiluca was estimated using a tabel with wet weight for each species an stage.
Resumo:
Dissolved organic matter (DOM) is the main substrate and energy source for heterotrophic bacterioplankton. To understand the interactions between DOM and the bacterial community (BC), it is important to identify the key factors on both sides in detail, chemically distinct moieties in DOM and the various bacterial taxa. Next-generation sequencing facilitates the classification of millions of reads of environmental DNA and RNA amplicons and ultrahigh-resolution mass spectrometry yields up to 10,000 DOM molecular formulae in a marine water sample. Linking this detailed biological and chemical information is a crucial first step toward a mechanistic understanding of the role of microorganisms in the marine carbon cycle. In this study, we interpreted the complex microbiological and molecular information via a novel combination of multivariate statistics. We were able to reveal distinct relationships between the key factors of organic matter cycling along a latitudinal transect across the North Sea. Total BC and DOM composition were mainly driven by mixing of distinct water masses and presumably retain their respective terrigenous imprint on similar timescales on their way through the North Sea. The active microbial community, however, was rather influenced by local events and correlated with specific DOM molecular formulae indicative of compounds that are easily degradable. These trends were most pronounced on the highest resolved level, that is, operationally defined 'species', reflecting the functional diversity of microorganisms at high taxonomic resolution.
Resumo:
For the optimal use in palaeoceanographic studies of the stable oxygen isotopic signal and elemental composition of the calcareous photosynthetic dinoflagellate Thoracosphaera heimii, it is essential to gain detailed information about its calcification depth and spatial distribution. We therefore studied the vertical and horizontal distribution patterns of T. heimii in the upper water column (0-200 m) along three transects: an inshore-offshore gradient off Cape Blanc (CB), a south-north transect from CB to the Portuguese coast and a north-south transect off Tanzania. We compared concentrations of living cysts (cells with cell content) with chlorophyll-a, salinity and temperature measurements at the sampling depth. In order to explore the seasonal variability in cyst production, three transect off CB were sampled at three different times of the year. Living T. heimii cysts were found in the upper 160 m of the water column with highest concentrations in the photic zone indicating that the calcification of T. heimii occurs in the upper part of the water column. Maximal abundances of living cysts were found relatively often in or just above the deep chlorophyll maximum (DCM), the depth of which varies regionally from about 20-40 m off CB to about 80 m off Tanzania and along the transect from CB to the Portuguese Coast. However, there was no significant correlation at the 95% confidence level between the cyst concentrations and temperature, salinity and chlorophyll-a concentrations at the sampling depths observed. In both the Atlantic and Indian Oceans, the highest abundances of T. heimii were observed in regions where the upper water masses contained relatively low nutrient concentrations that are influenced only sporadically, or not at all, by enhanced photic zone mixing related to the presence of upwelling cells or river outflow plumes at or close to the sampling sites. The seasonal production of cysts by T. heimii appears to be negatively related to the presence of upwelling filaments across the sampling sites. Our study suggests that turbulence of the upper water masses is a major environmental factor influencing T. heimii production.
Resumo:
The formation of a subsurface anticyclonic eddy in the Peru-Chile Undercurrent (PCUC) in January and February 2013 is investigated using a multi-platform four-dimensional observational approach. Research vessel, multiple glider and mooring-based measurements were conducted in the Peruvian upwelling regime near 12°30'S. The dataset consists of more than 10000 glider profiles and repeated vessel-based hydrography and velocity transects. It allows a detailed description of the eddy formation and its impact on the near-coastal salinity, oxygen and nutrient distributions. In early January, a strong PCUC with maximum poleward velocities of ca. 0.25 m/s at 100 to 200 m depth was observed. Starting on January 20 a subsurface anticyclonic eddy developed in the PCUC downstream of a topographic bend, suggesting flow separation as the eddy formation mechanism. The eddy core waters exhibited oxygen concentrations less than 1mol/kg, an elevated nitrogen-deficit of ca. 17µmol/l and potential vorticity close to zero, which seemed to originate from the bottom boundary layer of the continental slope. The eddy-induced across-shelf velocities resulted in an elevated exchange of water masses between the upper continental slope and the open ocean. Small scale salinity and oxygen structures were formed by along-isopycnal stirring and indications of eddy-driven oxygen ventilation of the upper oxygen minimum zone were observed. It is concluded that mesoscale stirring of solutes and the offshore transport of eddy core properties could provide an important coastal open-ocean exchange mechanism with potentially large implications for nutrient budgets and biogeochemical cycling in the oxygen minimum zone off Peru.
Resumo:
Introduction: Chemical composition of water determines its physical properties and character of processes proceeding in it: freezing temperature, volume of evaporation, density, color, transparency, filtration capacity, etc. Presence of chemical elements in water solution confers waters special physical properties exerting significant influence on their circulation, creates necessary conditions for development and inhabitance of flora and fauna, and imparts to the ocean waters some chemical features that radically differ them from the land waters (Alekin & Liakhin, 1984). Hydrochemical information helps to determine elements of water circulation, convection depth, makes it easier to distinguish water masses and gives additional knowledge of climatic variability of ocean conditions. Hydrochemical information is a necessary part of biological research. Water chemical composition can be the governing characteristics determining possibility and limits of use of marine objects, both stationary and moving in sea water. Subject of investigation of hydrochemistry is study of dynamics of chemical composition, i.e. processes of its formation and hydrochemical conditions of water bodies (Alekin & Liakhin 1984). The hydrochemical processes in the Arctic Ocean are the least known. Some information on these processes can be obtained in odd publications. A generalizing study of hydrochemical conditions in the Arctic Ocean based on expeditions conducted in the years 1948-1975 has been carried out by Rusanov et al. (1979). The "Atlas of the World Ocean: the Arctic Ocean" contains a special section "Hydrochemistry" (Gorshkov, 1980). Typical vertical profiles, transects and maps for different depths - 0, 100, 300, 500, 1000, 2000, 3000 m are given in this section for the following parameters: dissolved oxygen, phosphate, silicate, pH and alkaline-chlorine coefficient. The maps were constructed using the data of expeditions conducted in the years 1948-1975. The illustrations reflect main features of distribution of the hydrochemical elements for multi-year period and represent a static image of hydrochemical conditions. Distribution of the hydrochemical elements on the ocean surface is given for two seasons - winter and summer, for the other depths are given mean annual fields. Aim of the present Atlas is description of hydrochemical conditions in the Arctic Ocean on the basis of a greater body of hydrochemical information for the years 1948-2000 and using the up-to-date methods of analysis and electronic forms of presentation of hydrochemical information. The most wide-spread characteristics determined in water samples were used as hydrochemical indices. They are: dissolved oxygen, phosphate, silicate, pH, total alkalinity, nitrite and nitrate. An important characteristics of water salt composition - "salinity" has been considered in the Oceanographic Atlas of the Arctic Ocean (1997, 1998). Presentation of the hydrochemical characteristics in this Hydrochemical Atlas is wider if compared with that of the former Atlas (Gorshkov, 1980). Maps of climatic distribution of the hydrochemical elements were constructed for all the standard depths, and seasonal variability of the hydrochemical parameters is given not only for the surface, but also for the underlying standard depths up to 400 m and including. Statistical characteristics of the hydrochemical elements are given for the first time. Detailed accuracy estimates of initial data and map construction are also given in the Atlas. Calculated values of mean-root deviations, maximum and minimum values of the parameters demonstrate limits of their variability for the analyzed period of observations. Therefore, not only investigations of chemical statics are summarized in the Atlas, but also some elements of chemical dynamics are demonstrated. Digital arrays of the hydrochemical elements obtained in nodes of a regular grid are the new form of characteristics presentation in the Atlas. It should be mentioned that the same grid and the same boxes were used in the Atlas, as those that had been used by creation of the US-Russian climatic Oceanographic Atlas. It allows to combine hydrochemical and oceanographic information of these Atlases. The first block of the digital arrays contains climatic characteristics calculated using direct observational data. These climatic characteristics were not calculated in the regions without observations, and the information arrays for these regions have gaps. The other block of climatic information in a gridded form was obtained with the help of objective analysis of observational data. Procedure of the objective analysis allowed us to obtain climatic estimates of the hydrochemical characteristics for the whole water area of the Arctic Ocean including the regions not covered by observations. Data of the objective analysis can be widely used, in particular, in hydrobiological investigations and in modeling of hydrochemical conditions of the Arctic Ocean. Array of initial measurements is a separate block. It includes all the available materials of hydrochemical observations in the form, as they were presented in different sources. While keeping in mind that this array contains some amount of perverted information, the authors of the Atlas assumed it necessary to store this information in its primary form. Methods of data quality control can be developed in future in the process of hydrochemical information accumulation. It can be supposed that attitude can vary in future to the data that were rejected according to the procedure accepted in the Atlas. The hydrochemical Atlas of the Arctic Ocean is the first specialized and electronic generalization of hydrochemical observations in the Arctic Ocean and finishes the program of joint efforts of Russian and US specialists in preparation of a number of atlases for the Arctic. The published Oceanographic Atlas (1997, 1998), Atlas of Arctic Meteorology and Climate (2000), Ice Atlas of the Arctic Ocean prepared for publication and Hydrochemical Atlas of the Arctic Ocean represent a united series of fundamental generalizations of empirical knowledge of Arctic Ocean nature at climatic level. The Hydrochemical Atlas of the Arctic Ocean was elaborated in the result of joint efforts of the SRC of the RF AARI and IARC. Dr. Ye. Nikiforov was scientific supervisor of the Atlas, Dr. R. Colony was manager on behalf of the USA and Dr. L. Timokhov - on behalf of Russia.