248 resultados para Time-scale


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Holes 603C and 604 of DSDP Leg 93 were drilled on the western Atlantic continental rise at water depths of 4633 m and 2364 m, respectively. In Hole 603C, a nearly continuous, undisturbed, and complete section of Pliocene and lower Pleistocene sediments was recovered by hydraulic piston coring; in Hole 604, a section of uppermost Miocene to Pleistocene sediments was incompletely recovered by rotary coring. In order to reconstruct the Pliocene and Pleistocene history of isotopic variations, 139 oxygen and carbon isotope values were determined for planktonic and monospecific benthic foraminifer samples from these holes. Large parts of the Pleistocene history could not, however, be documented because sample intervals were large and sediments at Site 604 were redeposited. Time correlation is based on magnetostratigraphic (Hole 603C) and micropaleontologic (Hole 603C, Site 604) interpretation. Stable isotope analyses were carried out on the planktonic foraminiferal species Globigerinoides ruber, G. obliquus, and Globorotalia inflata from Hole 603C (48 analyses) and from Site 604 (48 analyses); at Site 604, the benthic foraminifer Uvigerina peregrina (43 analyses) was also studied through the section. Age calibration for Hole 603C is based on the magnetostratigraphy of Canninga et al. (1987; doi:10.2973/dsdp.proc.93.130.1987), which uses the time scale of Lowrie and Alvarez (1981).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The 1.4-m.y.-long stable oxygen isotope record of Site 1006 in the low-latitude North Atlantic Ocean shows large glacial/interglacial amplitude changes caused by a combination of temperature and salinity fluctuations. A trend of increased sea-surface temperatures during the interglacial periods is present in the record beginning at isotopic Stage 11 and ultimately leading to the lightest d18O values in isotopic Stages 9, 5, and 1. Maximum d18O values are recorded during glacial isotopic Stages 6 and 8. Stable isotopic variability increased during the Brunhes Chron at the 100-ka time scale. The large amplitude changes can best be explained by global and regional ocean circulation changes. Increased strengthened return flow of warm salty water from the Pacific may have occurred during interglacial periods since isotopic Stage 11, which was largely reduced during glacial periods. The large climate fluctuations had a profound effect on the shallow-water carbonate production of the Great Bahama Bank. The aragonite content of the sediments shows fluctuations that follow the d18O record. The leeward side of the Great Bahama Bank received increased input of platform material during sea-level highstands when the sea-surface waters were warm.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An orbital floating time scale of the Hauterivian-Barremian transition (Early Cretaceous) is proposed using high-resolution magnetic susceptibility measurements. Orbital tuning was performed on the Río Argos section (southeast Spain), the candidate for a Global boundary Stratotype Section and Point (GSSP) for the Hauterivian-Barremian transition. Spectral analyses of MS variations, coupled with the frequency ratio method, allow the recognition of precession, obliquity and eccentricity frequency bands. Orbitally-tuned magnetic susceptibility provides minimum durations for ammonite biozones. The durations of well-constrained ammonite zones are assessed at 0.78 myr for Pseudothurmannia ohmi (Late Hauterivian) and 0.57 myr for Taveraidiscus hugii (Early Barremian). These results are consistent with previous estimates from the other reference section (Angles, southeast France) and tend to show that the Río Argos section displays a complete succession for this time interval. They differ significantly from those proposed in the Geologic Time Scale 2008 and may help to improve the next compilation. The Faraoni Oceanic Anoxic Event, a key Early Cretaceous oceanographic perturbation occurring at the P. ohmi/P. catulloi subzone boundary has a duration estimated at 0.10-0.15 myr, which is similar to previous assessments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Quaternary climate of southern Europe (south Italy and Greece) is investigated by pollen analysis of the sapropels which were deposited in the deep eastern Mediterranean Sea during the last 1 million year (Ma). The time-scale of core KC01b in the Ionian Sea has been established by tuning its oxygen isotopic record to the ice volume model of Imbrie and Imbrie (1980, doi:10.1126/science.207.4434.943). For the last 250,000 year (250 ka), the previous pollen studies and astronomical tuning have been confirmed. Sapropels were deposited under a large range of Mediterranean climates: fully interglacial, fully glacial, and intermediary, as revealed mainly by the balance between the respective pollen abundances of oak (Quercus) and sage-brush (Artemisia). The high value of the oak reveals the warm and wet climate of an Interglacial, and the high value of the sage-brush, the dry and cold climate of a Glacial. Whereas the Mediterranean climate is directly related to the variation of the high-latitude ice sheets, the deposition of sapropels is not so. In contrast with the wide climatic range, sapropels were deposited only when summer insolation in the low latitudes reached its highest peaks. However, between 250 ka and 1 Ma, that stable pattern is not yet established. Only six sapropels are observed, many expected ones do not appear, even as ghosts signalled by peaks of barium abundance, that remain after the post-deposition oxidation of organic matter. The pattern of sapropel formation in stable and direct relationship to highest insolation does not seem to apply. For five of those sapropels, neither climate extremes are observed; they mainly formed during intermediary types of Mediterranean climate. In contrast, one sapropel (and one ghost) relates to a relatively low peak of insolation, and its climate is of a unique, composite type not seen later. This might suggest an unsuspected, more complex pattern linking the formation of Mediterranean sapropels to the astronomical configuration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Correlations of biostratigraphic datums to the geomagnetic reversal time scale (GRTS) at Leg 107 sites provide a means of correlating these datums to sections outside the Mediterranean. Unfortunately, poor recovery and core deformation due to rotary drilling at Sites 651, 652, and 654 severely hampered efforts to acquire detailed magnetostratigraphies and biostratigraphies. However, many biostratigraphic markers could be correlated to the GRTS, including those close to the Miocene/Pliocene and Tortonian/Messinian boundaries. These boundaries are interpreted to occur in Chrons 3r and 3B, respectively (chron nomenclature after Cox, 1982). Comparison of the correlation of Plio-Pleistocene calcareous plankton biostratigraphic events to the GRTS in the Mediterranean and in the open oceans indicates that many events are broadly synchronous between the two environments. The outstanding exception is the first occurrence of Globorotalia margaritae which is delayed in the Mediterranean by about 1 m.y.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The early Eocene represents a time of major changes in the global carbon cycle and fluctuations in global temperatures on both short- and long-time scales. These perturbations of the ocean-atmosphere system have been linked to orbital forcing and changes in net organic carbon burial, but accurate age models are required to disentangle the various forcing mechanisms and assess causal relationships. Discrepancies between the employed astrochronological and radioisotopic dating techniques prevent the construction of a robust time frame between ~49 and ~54 Ma. Here we present an astronomically tuned age model for this critical time period based on a new high-resolution benthic d13C record of ODP Site 1263, SE Atlantic. First, we assess three possible tuning options to the stable long-eccentricity cycle (405-kyr), starting from Eocene Thermal Maximum 2 (ETM2, ~54 Ma). Next we compare our record to the existing bulk carbonate d13C record from the equatorial Atlantic (Demerara Rise, ODP Site 1258) to evaluate our three initial age models and compare them with alternative age models previously established for this site. Finally, we refine our preferred age model by expanding our tuning to the 100-kyr eccentricity cycle of the La2010d solution. This solution appears to accurately reflect the long- and short-term eccentricity-related patterns in our benthic d13C record of ODP Site 1263 back to at least 52 Ma and possibly to 54 Ma. Our time scale not only aims to provide a new detailed age model for this period, but it may also serve to enhance our understanding of the response of the climate system to orbital forcing during this super greenhouse period as well as trends in its background state.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Distributional patterns of glaciological parameters at the Colle Gnifetti core drilling site are described and their interrelationships are brietly discussed. Observations within a stake network established in 1980 furnish information about snow accumulation (short term balance), submergence velocity of ice tlow (long term balance), ram hardness (melt layer stratigraphy), and firn temperature. In addition, a numerical model was used to estimate local variations of available radiant energy. Melt layer formation is considerably more intensive on the south facing parts of the firn saddie where incoming radiation is high. These melt layers seem to effectively protect some of the fallen snow from wind erosion. As a result, balance ist up to one order of magnitude larger on south facing slopes. Heat applied to the surface is therefore positively correlated with balance, whereas the relation between solar radiation and firn temperature is less dear. Distributional patterns of submergence velocity confirm that the observed spatial variability of surface balance is representative for longer time periods and greatly intluences the time scale and the stratigraphy of firn and ice cores from Colle Gnifetti.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We constructed a precise early Eocene orbital cyclostratigraphy for DSDP Site 550 (Leg 80, Goban Spur, North Atlantic) utilizing precession related cycles as represented in a high resolution X-Ray Fluorescence based Barium core log. Based on counting of those cycles, we constrain the exact timing of two volcanic ash layers in Site 550 which correlate to ashes +19 and -17 of the Fur Formation in Denmark. The ashes, relative to the onset of the Paleocene/Eocene Thermal Maximum (PETM), are offset by 862 kyr and 672 kyr, respectively. When combined with published absolute ages for ash -17, the absolute age for the onset of the PETM is consistent with astronomically calibrated ages. Using the current absolute age of 28.02 Ma for the Fish Canyon Tuff (FCT) standard for calibrating the absolute age of ash -17 is consistent with tuning option 2 in the astronomically calibrated Paleocene time scale of Westerhold et al. (2008) [Westerhold, T., Röhl, U., Raffi, I., Fornaciari, E., Monechi, S., Reale, V., Bowles, J., and Evans, H.F., 2008, Astronomical calibration of the Paleocene time: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 257, p. 377-403]. Using the recently recalibrated absolute age of 28.201 Ma for the FCT standard is consistent with tuning option 3 in the astronomically calibrated Paleocene time scale. The new results do not support the existence of any additional 405-kyr cycle in the early Paleocene astronomically tuned time scale.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A detailed Pliocene oxygen isotope record from the Ontong Java Plateau, based on measurements of the surface-dwelling planktonic foraminifer Globigerinoides sacculifer, was produced for the period from 5 to 2 Ma. The record documents major long- and short-term climate changes. The results show periods of enhanced ice volume at 4.6 to 4.3 Ma and after 2.85 Ma, a long-term warming trend from 4.1 to 3.7 Ma, and a distinct cooling trend that was initiated at 3.5 Ma and progressed through the initiation of large-scale Northern Hemisphere glaciation after 2.85 Ma (according to the time scale of Shackleton and others proposed in 1990). Periods of high average ice volumes also show the highest d18O amplitudes. The pattern of climate cyclicity changed markedly at about 2.85 Ma. Earlier times were marked by high-frequency variability at the precessional frequencies or even higher frequencies, pointing to low-latitude processes as a main controlling factor driving planktonic d18O variability in this period. The high-frequency variability is not coherent with insolation and points to strong nonlinearity in the way the climate system responded to orbital forcing before the onset of large scale Northern Hemisphere glaciation. After 3 Ma, stronger 41-k.y. cyclicity appears in the record. The shift in pattern is clearest around 2.85 Ma (according to the time scale proposed by Shackleton and others in 1990), 100-200 k.y. before the most dramatic spread of Northern Hemisphere ice sheets. This indicates that high-latitude processes from this point on began to take over and influence most strongly the d18O record, which now reflects ice-volume fluctuations related to the climatic effects of obliquity forcing on the seasonality of high-latitude areas, most probably in the Northern Hemisphere. The general Pliocene trend is that high-latitude climate sensitivity and instability was increasing, and the causal factors producing the intensified glacial cyclicity during the Pliocene must be factors that enhance cooling and climate sensitivity in the subarctic areas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Natural Remanent Magnetization (NRM) was measured for regularly spaced samples from the 620-m-thick, lower middle Eocene to upper Maestrichtian section of DSDP Site 605. The total NRM of the Eocene chalks was too low (5-50 µA/m) to establish a reliable magnetic polarity stratigraphy. However, the results from the somewhat more clayrich Paleocene-upper Maestrichtian section are useful. A fourfold quality classification of the results of progressive demagnetization studies aided in determining the polarity of the original remanence. Two types (1 and 2a) showed a Characteristic Remanent Magnetization (ChRM) direction with reversed and normal polarity, respectively; the third type (2b) can be interpreted as having a reversed ChRM, which could not be cleaned, whereas the fourth type (3) is considered to be unreliable. The Site 605 magnetic polarity stratigraphy compares well with published sections, adding important detail to the correlation with planktonic microfossil zones and, hence, to the resolution of this portion of the time scale (C24-C32 on the Berggren et al., 1985, scale). The Cretaceous/Tertiary boundary occurs in a reversed polarity zone that has been correlated with Subchron C29r. We suspect the presence of an unconformity at the boundary between lithostratigraphic Units Va and IV a location which is also the level of Reflection Horizon A*.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Proxy indicators of sea surface temperature and equatorial divergence based on radiolarian assemblage data, and of trade wind intensity based on eolian grain size data show similar aspects of variability during the late Pleistocene: All indicators fluctuate at higher frequencies than the 100,000-year glacial-interglacial cycle, display reduced amplitude variations since 300,000 years ago, exhibit a change in the record character at about 300,000 years ago (the mid-Brunhes climatic event), and have higher amplitude variations in sediments 300,000-850,000 years old. Time series analyses were conducted to determine the spectral character of each record (delta18O of planktonic foraminifer, sea surface temperature values, equatorial divergence indicators, and wind intensity indicators) and to quantify interrecord coherence and phase relationships. The record was divided at the 300,000-year clear change in climatic variability (nonstationarity). The delta18O-based time scale is better lower in the core so our spectral analyses concentrated on the interval from 402,000-774,000 years. The delta18O spectra show 100,000- and 41,000-year power in the younger portion, 0-300,000 years, and 100,000-, 41,000- and 23,000-year power in the older interval, all highly coherent and in phase with the SPECMAP average stacked isotope record. Unlike the isotope record the dominant period in both the eolian grain size and equatorial divergence indicators is 31,000 years. This period is also important in the sea surface temperature signal where the dominant spectral peak is 100,000 years. The 31,000-year spectral component is coherent and in phase between the eolian and divergence records, confirming the link between atmospheric and ocean surface circulation for the first time in the paleoclimate record. Since the 31,000-year power appears in independent data sets within this core and also appears in other equatorial records [J. Imbrie personal communication, 1987], we assume it to be real and representative of both a nonlinear response to orbital forcing, possibly a combination of orbital tilt and eccentricity, and some resonance phenomenon required to amplify the response at this period so that it appears as a dominant frequency component. The mid-Brunhes climatic event is an important aspect of these records, but its cause remains unknown.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biogenic components of sediment accumulated at high rates beneath frontal zones of the Indian and Pacific oceans during the late Miocene and early Pliocene. The delta13C of bulk and foraminiferal carbonate also decreased during this time interval. Although the two observations may be causally linked, and signify a major perturbation in global biogeochemical cycling, no site beneath a frontal zone has independent records of export production and delta13C on multiple carbonate phases across the critical interval of interest. Deep Sea Drilling Project (DSDP) site 590 lies beneath the Tasman Front (TF), an eddy-generating jetstream in the southwest Pacific Ocean. To complement previous delta13C records of planktic and benthic foraminifera at this location, late Neogene records of CaCO3 mass accumulation rate (MAR), Ca/Ti, Ba/Ti, Al/Ti, and of bulk carbonate and foraminiferal delta13C were constructed at site 590. The delta13C records include bulk sediment, bulk sediment fractions (<63 µm and 5-25 µm), and the planktic foraminifera Globigerina bulloides, Globigerinoides sacculifer (with and without sac), and Orbulina universa. Using current time scales, CaCO3 MARs, Ca/Ti, Al/Ti and Ba/Ti ratios are two to three times higher in upper Miocene and lower Pliocene sediment relative to overlying and underlying units. A significant decrease also occurs in all delta13C records. All evidence indicates that enhanced export production - the 'biogenic bloom' - extended to the southwest Pacific Ocean between ca. 9 and 3.8 Ma, and this phenomenon is coupled with changes in delta13C - the 'Chron C3AR carbon shift'. However, CaCO3 MARs peak ca. 5 Ma whereas elemental ratios are highest ca. 6.5 Ma; foraminiferal delta13C starts to decrease ca. 8 Ma whereas bulk carbonate delta13C begins to drop ca. 5.6 Ma. Temporal discrepancies between the records can be explained by changes in the upwelling regime at the TF, perhaps signifying a link between changes in ocean-atmosphere circulation change and widespread primary productivity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We constructed biogenic mass accumulation rate (MAR) time series for eastern Pacific core transects across the equator at ~105° and ~85°W and along the equator from 80° to 140°W. We used empirical orthogonal function (EOF) analysis to extract spatially coherent patterns of CaCO3 deposition for the last 150 kyr. EOF mode 1 (51% variance) is a CaCO3 MAR spike centered in marine oxygen isotope stage 2 (MIS 2) found under the South Equatorial Current. EOF mode 2 (19% of variance) is high north of the equator. EOF mode 3 (9% of variance) is an east-west mode centered along the North Equatorial Counter Current. The MIS 2 CaCO3 spike is the largest event in the eastern Pacific for the last 150 kyr: CaCO3 MARs are 2-3 times higher at 18 ka than elsewhere in the record, including MIS 6. It is caused by high CaCO3 production rather than minimal dissolution. EOF 2, while it resembles deep water flow patterns, nevertheless, shows coherence to Corg deposition and is probably also driven by CaCO3 production.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Precise knowledge of the phase relationship between climate changes in the two hemispheres is a key for understanding the Earth's climate dynamics. For the last glacial period, ice core studies have revealed strong coupling of the largest millennial-scale warm events in Antarctica with the longest Dansgaard-Oeschger events in Greenland through the Atlantic meridional overturning circulation. It has been unclear, however, whether the shorter Dansgaard-Oeschger events have counterparts in the shorter and less prominent Antarctic temperature variations, and whether these events are linked by the same mechanism. Here we present a glacial climate record derived from an ice core from Dronning Maud Land, Antarctica, which represents South Atlantic climate at a resolution comparable with the Greenland ice core records. After methane synchronization with an ice core from North Greenland, the oxygen isotope record from the Dronning Maud Land ice core shows a one-to-one coupling between all Antarctic warm events and Greenland Dansgaard-Oeschger events by the bipolar seesaw. The amplitude of the Antarctic warm events is found to be linearly dependent on the duration of the concurrent stadial in the North, suggesting that they all result from a similar reduction in the meridional overturning circulation.