239 resultados para Thermal structure in the sea


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large scale patterns of ecologically relevant traits may help identify drivers of their variability and conditions beneficial or adverse to the expression of these traits. Antimicrofouling defenses in scleractinian corals regulate the establishment of the associated biofilm as well as the risks of infection. The Saudi Arabian Red Sea coast features a pronounced thermal and nutritional gradient including regions and seasons with potentially stressful conditions to corals. Assessing the patterns of antimicrofouling defenses across the Red Sea may hint at the susceptibility of corals to global change. We investigated microfouling pressure as well as the relative strength of 2 alternative antimicrofouling defenses (chemical antisettlement activity, mucus release) along the pronounced environmental gradient along the Saudi Arabian Red Sea coast in 2 successive years. Microfouling pressure was exceptionally low along most of the coast but sharply increased at the southernmost sites. Mucus release correlated with temperature. Chemical defense tended to anti-correlate with mucus release. As a result, the combined action of mucus release and chemical antimicrofouling defense seemed to warrant sufficient defense against microbes along the entire coast. In the future, however, we expect enhanced energetic strain on corals when warming and/or eutrophication lead to higher bacterial fouling pressure and a shift towards putatively more costly defense by mucus release.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dataset containing macrobenthos data for samples collected during September 2008 in the North-West Black Sea (between 44°46' - 43°45' N latitude and 30° 11' - 29°35' E longitude). Macrobenthos sampling was done in 4 stations using a 0.14 m**2 Van Veen grab. Washing of the sample through two sieves - 1 mm and 0.25 mm mesh size; the material retained by the two sieves was examined at the binocular microscope; all animals were extracted, using fine tweezers and the species or group of species were identified and counted (in order to determine the density of populations); the larger organisms were measured and weighed (structure and biomass); for smaller organisms, the average wet weights inscribed in standard tables were used to calculate the biomass. Taxonomic identification was done at the GeoEcoMar by A. Teaca and T. Begun using the relevant taxonomic literature ( "Key-book for the identification of the Black Sea and Sea of Azov Fauna, 1968 -1972, Kiev - in Russian, V 1-4; BACESCU, M.C., MÜLLER, G. I., GOMOIU, M.-T., 1971). BACESCU, M.C., MÜLLER, G. I., GOMOIU, M.-T., 1971-Benthic ecological research to Black Sea. Comparative quantitative and qualitative analyse of pontic benthic fauna. Marine Ecology, 4, 1-357 (in Romanian). Key-book for the identification of the Black Sea and Sea of Azov Fauna, 1968 -1972, Kiev, V. 1-4 (in Russian).