216 resultados para TRACERS
Resumo:
Magnetic susceptibility and ice-rafted debris of surface sediments in the Nordic Seas were investigated to reconstruct source areas and recent transport pathways of magnetic minerals. From the distribution of magnetic susceptibility and ice-rafted debris and published data on petrographic tracers for iceberg drift, we reconstructed a counter-clockwise iceberg drift pattern during cooler phases in the Holocene, which is similar to conceptual and numerical models for Weichselian iceberg drift. The release of basaltic debris at Scoresby Sund played a significant role for the magnetic signature of stadial/interstadial events during isotope stage 3 recorded in sediment cores of the Nordic Seas.
Resumo:
The subduction of oceanic plates regulates crustal growth, influences arc volcanism, and refertilizes the mantle. Continental growth occurs by subduction of crustal material (seawater components, marine sediments, and basaltic crust). The geochemical and physical evolution of the Earth's crust depends, in large part, on the fate of subducted material at convergent margins (Armstrong, 1968, doi:10.1029/RG006i002p00175; Karig and Kay, 1981, 10.1098/rsta.1981.0108). The crustal material on the downgoing plate is recycled to various levels in the subduction zone. The recycling process that takes place in the "Subduction Factory" is difficult to observe directly but is clearly illuminated using chemical tracers. Von Huene and Scholl (1991, doi:10.1029/91RG00969) and Plank and Langmuir (1993, doi:10.1038/362739a0) preliminarily calculated a large flux of subducted materials. By mass balancing the chemical tracers and measuring the fractionations that occur between them, the Subduction Factory work and the effect on the Earth's evolution can be estimated. In order to elucidate this mass balance, Ocean Drilling Program Leg 185 drilled two deepwater shales into the oceanic crust situated in the Mariana-Izu Trenches and recovered core samples of incoming oceanic crust. The calculations of mass circulation in the subduction zone, however, did not take into account the mass transfer properties within subducted oceanic crust, although the dewatering fluid and diffused ions may play an important role in various activities such as seismogeneity, serpentine diapiring, and arc volcanism. Thus, this paper focuses on the quantitative measurements of the physical and mass transfer properties of subducted oceanic crust.
Resumo:
During the African Humid Period (AHP), much of the modern hyperarid Saharan desert was vegetated and covered with numerous lakes. In marine sediments off northwestern Africa, the AHP is represented by markedly reduced siliciclastic sediment flux between ~ 12.3 and 5.5 ka. Changes in the origin of this terrigenous sediment fraction can be constrained by sediment chemistry and radiogenic isotope tracers. At Ocean Drilling Program (ODP) Site 658, Hole C (20°44.95'N, 18°34.85'W, 2263 mbsl), the neodymium (Nd) isotope composition of terrigenous detritus shows little variability throughout the last 25 kyr, indicating that the contributing geological terranes have not changed appreciably since the last glacial period. In contrast, there were large and abrupt changes in strontium (Sr) isotope ratios and chemical compositions associated with the AHP, during which 87Sr/86Sr ratios were markedly less radiogenic, and sediments show higher chemical indices of alteration. We show that sediment geochemical changes during the AHP cannot be attributed to changes in the source terranes, physical sorting, or intensity of chemical weathering. The low 87Sr/86Sr and high Sr concentrations of AHP-age samples also conflict with the interpretation of increased fine-grained, fluvially derived sediments. We propose that the most significant compositional changes at ODP 658C are due to the addition of an aluminosilicate component that has a highly altered major element signature but is enriched in soluble elements like Sr and magnesium (Mg) compared to aluminum (Al) and has low 87Sr/86Sr relative to local terrigenous source areas. We interpret these characteristics to reflect authigenic sediment supply from extensive North African paleolake basins that were prevalent during the AHP.
Resumo:
Fluxes of airborne freshwater diatoms (FD), phytoliths (PH), and pollen grains (PO) collected with sediment traps off Cape Blanc, northwest Africa, from 1988 till 1991 are presented. Both continental rainfall variations and wind mean strength and direction play a key role in the temporal fluctuations of the fluxes of eolian traces in the pelagic realm. Drier conditions in Northern Africa in 1987 could have preceded the high lithogenic input and moderate FD flux in 1988. The PH peak in summer 1988 was probably caused by increased wind velocity. Wetter rainy seasons of 1988/89 might have promoted a significant pollen production in summer 1989, and FD in late 1989 and early 1990, as well as contributed to the reduction of the lithogenic flux in 1989/90. Decreased fluxes of FD, PH and PO, and higher contribution of the 6-11 µm lithogenic fraction in 1991 would mainly reflect minor intensity and decreased amount of continental trade winds. Air-mass backward trajectories confirm that the Saharan Air Layer is predominantly involved in the spring/summer transport. Trade winds play a decisive role in the fall/winter months, but also contribute to the transport during late spring/summer. Origin of wind trajectories does not support a direct relationship between transporting wind-layers and material source areas in Northern Africa. High winter fluxes of eolian tracers and high amount of trade winds with continental origin in summer warn against a simplistic interpretation of the seasonal eolian signal preserved in the sediments off Cape Blanc, and the wind layer involved in its transport.
Resumo:
Long chain diols are lipids that have gained interest over the last years due to their high potential to serve as biomarkers and diol indices have been proposed to reconstruct upwelling conditions and sea surface temperature (SST). However, little is known about the sources of the diols and the mechanisms impacting their distribution. Here we studied the factors controlling diol distributions in the Iberian Atlantic margin, which is characterized by a dynamic continental shelf under the influence of upwelling of nutrient-rich cold deep waters, and fluvial input. We analyzed suspended particulate matter (SPM) of the Tagus river, marine SPM and marine surface sediments along five transects off the Iberian margin, as well as riverbank sediments and soil from the catchment area of the Tagus river. Relatively high fractional abundances of the C32 1,15-diol (normalized with respect to the 1,13- and 1,15-diols) were observed in surface sediments in front of major river mouths and this abundance correlates strongly with the BIT index, a tracer for continental input of organic carbon. Together with an even higher fractional abundance of the C32 1,15-diol in the Tagus river SPM, and the absence of long chain diols in the watershed riverbank sediments and soils, we suggest that this long chain diol is produced in-situ in the river. Further support for this hypothesis comes from the small but distinct stable carbon isotopic difference of 1.3? with the marine C28 1,13-diol. The 1,14-diols are relatively abundant in surface sediments directly along the northern part of the coast, close to the upwelling zone, suggesting that Diol Indices based on 1,14-diols would work well as upwelling tracers in this region. Strikingly, we observed a significant difference in stable carbon isotopic composition between the monounsaturated C30:1 1,14- and the saturated C28 1,14-diol (3.8±0.7 per mil), suggesting different sources, in accordance with their different distributions. In addition, the Long chain Diol Index (LDI), a proxy for sea surface temperature, was applied for the surface sediments. The results correlate well with satellite SSTs offshore but reveal a significant discrepancy with satellite-derived SSTs in front of the Tagus and Sado rivers. This suggests that river outflow might compromise the applicability of this proxy.
Resumo:
In this study we present first results of a new model development, ECHAM5-JSBACH-wiso, where we have incorporated the stable water isotopes H218O and HDO as tracers in the hydrological cycle of the coupled atmosphere-land surface model ECHAM5-JSBACH. The ECHAM5-JSBACH-wiso model was run under present-day climate conditions at two different resolutions (T31L19, T63L31). A comparison between ECHAM5-JSBACH-wiso and ECHAM5-wiso shows that the coupling has a strong impact on the simulated temperature and soil wetness. Caused by these changes of temperature and the hydrological cycle, the d18O in precipitation also shows variations from -4 permil up to 4 permil. One of the strongest anomalies is shown over northeast Asia where, due to an increase of temperature, the d18O in precipitation increases as well. In order to analyze the sensitivity of the fractionation processes over land, we compare a set of simulations with various implementations of these processes over the land surface. The simulations allow us to distinguish between no fractionation, fractionation included in the evaporation flux (from bare soil) and also fractionation included in both evaporation and transpiration (from water transport through plants) fluxes. While the isotopic composition of the soil water may change for d18O by up to +8 permil:, the simulated d18O in precipitation shows only slight differences on the order of ±1 permil. The simulated isotopic composition of precipitation fits well with the available observations from the GNIP (Global Network of Isotopes in Precipitation) database.