216 resultados para River micro-basin


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The origin and modes of transportation and deposition of inorganic sedimentary material of the Black Sea were studied in approximately 60 piston, gravity, and Kasten cores. The investigation showed that the sediment derived from the north and northwest (especially from the Danube) has a low calcite-dolomite ratio and a high quartz-feldspar ratio. Rock fragments are generally not abundant; garnet is the principal heavy mineral and illite is the predominant clay mineral. This sedimentary material differs markedly from that carried by Anatolian rivers, which is characterized by a high calcite-dolomite ratio and a low quartz-feldspar ratio. Rock fragments are abundant; pyroxene is the principal heavy mineral and montmorillonite is the predominant clay mineral. In generel, the clay fraction is large in all sediments (27.6-86.9 percent), and the lateral distributian indicates an increase in clay consent from the coasts toward two centers in the western and eastern Black Sea basin. Illite is the most common clay mineral in the Black Sea sediments. The lateral changes in composition of the clay mineral can easily be traced to the petrologic character of northern (rich in illite) and southern (rich in montmorillonite) source areas. In almost all cores, a rhythmic change of the montmorillonite-illite ratio with depth was observed. These changes may be related to the changing influence of the two provinces during the Holocene and late Pleistocene. Higher montmorillonite content seems to indicate climctic changes, probably stages of glaciation end permafrost in the northern area, at which time the illite supply was diminished to a large extent. The composition of the sand fraction is relatad to the different petrologic and morphologic characteristics of two major source provimces: (1) a northern province (rich in quartz, feldspars, and garnet) characterized by a low elevation, comprising the Danube basin area and the rivers draining the Russian platform; and (2) a southern province (rich in pyroxene and volcanic and metamorphic rocks) in the mountainous region of Anatolia and the Caucasus, characterized by small but extremely erosive rivers. The textural properties (graded bedding) of the deep-sea send layers clearly suggest deposition from turbidity currents. The carbonate content of the contemporary sediments ranges from 5 to 65 percent. It increases from the coast to a maximum in two centers in the western and eastern basin. This pattern reflects the distribution of the <2-µm fraction. The contemporary mud sedimentation is governed by two important factors: (1) the deposition of terrigenous allochthonous material of low carbonate content originating from the surrounding hinterland (northern and southern source areas), and (2) the autochthonous production of large quantities of biogenic calcite by coccolithophores during the last period of about 3,000-4,000 years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A succession of 23 sub-millimetre to maximum 12-mm-thick, mostly flood-triggered detrital layers, deposited between 1976 and 2005, was analysed in 12 varved surface sediment cores from meso-scale peri-alpine Lake Mondsee applying microfacies and high-resolution micro X-ray fluorescence analyses. Detailed intrabasin comparison of these layers enabled identification of (i) different source areas of detrital sediments, (ii) flood-triggered sediment flux and local erosion events, and (iii) seasonal differences of suspended flood sediment distribution within the lake basin. Additional calibration of the detrital layer record with river discharge and precipitation data reveals different empirical thresholds for flood layer deposition for different parts of the basin. At proximal locations detrital layer deposition requires floods exceeding a daily discharge of 40 m**3/s, whereas at a location 2 km more distal an hourly discharge of 80 m**3/s and at least 2 days of discharge above 40 m**3/s are necessary. Furthermore, we observe a better correlation between layer thickness and flood amplitude in the depocentre than in distal and proximal areas of the basin. Although our results are partly site-specific, the applied dual calibration approach is suitable to precisely decipher flood layer formation processes and, thereby, improve the interpretation of long flood time series from lake sediments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coring during Integrated Ocean Drilling Program Expeditions 315, 316, and 333 recovered turbiditic sands from the forearc Kumano Basin (Site C0002), a Quaternary slope basin (Site C0018), and uplifted trench wedge (Site C0006) along the Kumano Transect of the Nankai Trough accretionary wedge offshore of southwest Japan. The compositions of the submarine turbiditic sands here are investigated in terms of bulk and heavy mineral modal compositions to identify their provenance and dispersal mechanisms, as they may reflect changes in regional tectonics during the past ca. 1.5 Myrs. The results show a marked change in the detrital signature and heavy mineral composition in the forearc and slope basin facies around 1 Ma. This sudden change is interpreted to reflect a major change in the sand provenance, rather than heavy mineral dissolution and/or diagenetic effects, in response to changing tectonics and sedimentation patterns. In the trench-slope basin, the sands older than 1 Ma were probably eroded from the exposed Cretaceous-Tertiary accretionary complex of the Shimanto Belt and transported via the former course of the Tenryu submarine canyon system, which today enters the Nankai Trough northeast of the study area. In contrast, the high abundance of volcanic lithics and volcanic heavy mineral suites of the sands younger than 1 Ma points to a strong volcanic component of sediment derived from the Izu-Honshu collision zones and probably funnelled to this site through the Suruga Canyon. However, sands in the forearc basin show persistent presence of blue sodic amphiboles across the 1 Ma boundary, indicating continuous flux of sediments from the Kumano/Kinokawa River. This implies that the sands in the older turbidites were transported by transverse flow down the slope. The slope basin facies then switched to reflect longitudinal flow around 1 Ma, when the turbiditic sand tapped a volcanic provenance in the Izu-Honshu collision zone, while the sediments transported transversely became confined in the Kumano Basin. Therefore, the change in the depositional systems around 1 Ma is a manifestation of the decoupling of the sediment routing pattern from transverse to long-distance axial flow in response to forearc high uplift along the megasplay fault.