318 resultados para Offshore aquafarming
Resumo:
Deep-sea benthic foraminiferal assemblages from Ocean Drilling Program (ODP) Site 1143 located in the southern South China Sea (SCS) were investigated to evaluate the relationship between faunal composition patterns and paleoceanographic changes during the last 6 million years (late Miocene to Holocene). We used multivariate statistics (correspondence analysis) to analyze carbon-flux-related changes in assemblage composition of benthic foraminifers. Additional proxies for carbon flux and deep-water ventilation include delta13C records of epifaunal Cibicidoides wuellerstorfi and infaunal Uvigerina peregrina var. dirupta and Melonis pompilioides, benthic foraminiferal accumulation rates (BFARs), diversity indices, and relative abundances of indicator species. We observe three significant benthic faunal changes in the southern South China Sea during the last 6 million years. Strong fluctuations in BFAR and relative abundance of productivity indicator species between glacial and interglacial stages after the mid-Pleistocene revolution (MPR) at approximately 0.9 Ma, indicating stronger seasonal carbon flux fluctuations, are accompanied by the extinction of such species as Stilostomella spp. Increases in carbon flux indicator species are coupled with an overall decrease in benthic foraminifer diversity around 3.0 Ma in the late Pliocene. This may indicate increasing carbon flux in a period of productivity maximum caused by enhanced offshore upwelling from intensified winter monsoon wind strength.
Resumo:
The book is devoted to investigations of benthic fauna and geology of the Southern Atlantic Ocean. These works have been carried out in terms of exploring biological structure of the ocean and are of great importance for development of this fundamental problem. They are based on material collected during Cruise 43 of R/V Akademik Kurchatov in 1985-1986 and Cruise 43 of R/V Dmitry Mendeleev in 1989. Problems of quantitative distribution, group composition and trophic structure of benthos in the Southern Scotia Sea, along the east-west Transatlantic section along 31°30'S, and offshore Namibia in the area of the Benguela upwelling are under consideration in the book. Authors present new data on fauna of several groups of deep-sea bottom animals and their zoogeography. Much attention is paid to analysis of morphological structure of the Scotia Sea floor considered in terms of plate tectonics. Bottom sediments along the Transatlantic section and facial variation of sediments in the area of South Shetland Islands and of the continental margin of Namibia are under consideration.
Resumo:
The first experiment of the ECOMARGE programme (ECOsystèmes de MARGE continentale) was initiated in 1983-1984, in the Gulf of Lions (northwestern Mediterranean Sea). The objectives of the ECOMARGE-I experiment were: to quantify the transfer of particulate matter, in general, and of organic carbon, in particular, from its introduction to and formation in the waters of the continental shelf-to its consumption or sedimentation on the shelf or its transfer to the slope and deep sea; and to understand the processes involved in that transfer, consumption and sedimentation together with their variability in space and time. The results of that experiment, from 1983 to 1988, are presented in this Special Issue. The highlights of the results are summarised in this paper. These results indicate that, of the particles formed in the waters of the continental shelf and those introduced by rivers, some are deposited as sediments on the shelf. A portion is transported offshore, however, to the slope and deep sea. The Rho^ne River, in the northeastern part of the study area, is the major source of continental material; this is transported to sea in a benthic nepheloid layer and, mostly, alongshore to the southwest. Here, it largely leaves the shelf through the canyons, especially the Lacaze-Duthiers Canyon. In the offshore waters, particle concentrations and distributions show surficial, intermediate and benthic nepheloid layers. These turbid structures increase towards the southwest, corresponding to the seaward shift of the front between the coastal waters and the Liguro-Provençal cyclonic gyre, a major forcing function in the Gulf of Lions. Considering the source and fate of particles (largely biogenic from the euphotic zone and abiogenic from deeper waters) a layered system is described, which is emphasized by the concentrations of natural and artificial elements and compounds. Of the flux of particles to the Lacaze-Duthiers Canyon, on a decadal scale, about 30% (as a minimum) is estimated to be stored as sediment; the remainder is transported down-canyon, towards the deep sea. The temporal variability of processes affecting this net seaward transport, of both biogenic and abiogenic material, is from hours, days to seasonal, and probably interannual, time scales. The response of the system to these variations is rapid, with pulses of increased discharge of particles from the adjacent shelf being detected in sediment traps in the Lacaze-Duthiers Canyon in less than 16 days (the temporal resolution of the traps). Based upon the study of tracers of particulate matter and environmental factors (i.e. river discharge and climatic conditions), it appears that the contribution from the Rho^ne River and its adjacent area is maximal during the winter; at this time, the flow of the Liguro-Provençal Current also increases. In contrast, the maximum relative contribution of the adjacent southwesterly area to the flux in the Lacaze-Duthiers Canyon occurs in summer, during storm events.
Resumo:
We detected authigenic clinoptilolites in two core samples of tuffaceous, siliceous mudstone in the lower Miocene section of Hole 439. They occur as prismatic and tabular crystals as long as 0.03 mm in various voids of dissolved glass shards, radiolarian shells, calcareous foraminifers, and calcareous algae. They are high in alkalies, especially Na, and in silica varieties. There is a slight difference in composition among them. The Si : (Al+ Fe3+) ratio is highest (4.65) in radiolarian voids, intermediate (4.34) in dissolved glass voids, and lowest (4.26) in voids of calcareous organisms. This difference corresponds to the association of authigenic silica minerals revealed by the scanning electron microscope: There are abundant opal-CT lepispheres in radiolarian voids, low cristobalite and some lepispheres in dissolved glass voids, and a lack of silica minerals in the voids of calcareous organisms. Although it contains some silica from biogenic opal and alkalies from trapped sea water, clinoptilolite derives principally from dissolved glass. Although they are scattered in core samples of Quaternary through lower Miocene diatomaceous and siliceous deposits, acidic glass fragments react with interstitial water to form clinoptilolite only at a sub-bottom depth of 935 meters at approximately 25°C. Analcimes occur in sand-sized clasts of altered acidic vitric tuff in the uppermost Oligocene sandstones. The analcimic tuff clasts were probably reworked from the Upper Cretaceous terrain adjacent to Site 439. Low cristobalite and opal-CT are found in tuffaceous, siliceous mudstone of the middle and lower Miocene sections at Sites 438 and 439. Low cristobalite derives from acidic volcanic glass and opal-CT from biogenic silica. Both siliceous organic remains and acidic glass fragments occur in sediments from the Quaternary through lower Miocene sections. However, the shallowest occurrence is at 700 meters subbottom in Hole 438A, where temperature is estimated to be 21°C. The d(101) spacing of opal-CT varies from 4.09 to 4.11 Å and that of low cristobalite from 4.04 to 4.06 Å. Some opal-CT lepispheres are precipitated onto clinoptilolites in the voids of radiolarian shells at a sub-bottom depth of 950 meters in Hole 439. Sandstone interlaminated with Upper Cretaceous shale is chlorite- calcite cemented and feldspathic. Sandstones in the uppermost Oligocene section are lithic graywacke and consist of large amounts of lithic clasts grouped into older sedimentary and weakly metamorphosed rocks, younger sedimentary rocks, and acidic volcanic rocks. The acidic volcanic clasts probably originated from the volcanic high, which supplied the basal conglomerate with dacite gravels. The older sedimentary and weakly metamorphosed rocks and green rock correspond to the lithologies of the lower Mesozoic to upper Paleozoic Sorachi Group, including the chert, limestone, and slate in south-central Hokkaido. However, the angular shape and coarseness of the clasts and the abundance of carbonate rock fragments indicate a nearby provenance, which is probably the southern offshore extension of the Sorachi Group. The younger sedimentary rocks, including mudstone, carbonaceous shale, and analcime-bearing tuff, correspond to the lithologies of the Upper Cretaceous strata in south-central Hokkaido. Their clasts were reworked from the southern offshore extension of the strata. Because of the discontinuity of the zeolite zoning due to burial diagenesis, an overburden several kilometers thick must have been denuded before the deposition of sediments in the early Oligocene.
Resumo:
During Deep Sea Drilling Project (DSDP) Leg 84 a core 1 m long and 6 cm in diameter of massive gas hydrate was unexpectedly recovered at Site 570 in upper slope sediment of the Middle America Trench offshore of Guatemala. This core contained only 5-7% sediment, the remainder being the solid hydrate composed of gas and water. Samples of the gas hydrate were decomposed under controlled conditions in a closed container maintained at 4°C. Gas pressure increased and asymptotically approached the equilibrium decomposition pressure for an ideal methane hydrate, CH4.5-3/4H2O, of 3930 kPa and approached to this pressure after each time gas was released, until the gas hydrate was completely decomposed. The gas evolved during hydrate decomposition was 99.4% methane, ~0.2% ethane, and ~0.4% CO2. Hydrocarbons from propane to heptane were also present, but in concentrations of less than 100 p.p.m. The carbon-isotopic composition of methane was -41 to -44 per mil, relative to PDB standard. The observed volumetric methane/water ratio was 64 or 67, which indicates that before it was stored and analyzed, the gas hydrate probably had lost methane. The sample material used in the experiments was likely a mixture of methane hydrate and water ice. Formation of this massive gas hydrate probably involved the following processes: (i) upward migration of gas and its accumulation in a zone where conditions favored the growth of gas hydrates, (ii) continued, unusually rapid biological generation of methane, and (iii) release of gas from water solution as pressure decreased due to sea level lowering and tectonic uplift.
Resumo:
The chemistry of snow and ice cores from Svalbard is influenced by variations in local sea ice margin and distance to open water. Snow pits sampled at two summits of Vestfonna ice cap (Nordaustlandet, Svalbard), exhibit spatially heterogeneous soluble ions concentrations despite similar accumulation rates, reflecting the importance of small-scale weather patterns on this island ice cap. The snow pack on the western summit shows higher average values of marine ions and a winter snow layer that is relatively depleted in sulphate. One part of the winter snow pack exhibits a [SO4-/Na+] ratio reduced by two thirds compared with its ratio in sea water. This low sulphate content in winter snow is interpreted as the signature of frost flowers, which are formed on young sea ice when offshore winds predominate. Frost flowers have been described as the dominant source of sea salt to aerosol and precipitation in ice cores in coastal Antarctica but this is the first time their chemical signal has been described in the Arctic. The eastern summit does not show any frost flower signature and we interpret the unusually dynamic ice transport and rapid formation of thin ice on the Hinlopen Strait as the source of the frost flowers.
Resumo:
We determined the numbers of free-living and associated (aggregated or bonded with particles) bacteria in the coastal water of King George Island at an offshore (St. 1) and a nearshore station (St. 2) as a function of physico-chemical parameters. Water sampIes were collected between March and October at St. 1 and between April and October at St. 2. Direct counts of total bacteria varied from 0.53*10**8 to 5.02*10**8 cells/l. Associated microorganisms accounted for 5 to 20 % of the total number of bacteria. Strong Spearman and Pearson correlations were observed (R = 0.82; P = 0.001) between the numbers of free-living and associated bacteria at St. 1. These two groups of bacteria were nearly evenly distributed in the horizontal transects from inshore to offshore waters at depths of 1-10 m in Ardley Cove. There were no substantial differences in the numbers of either free-living or associated bacteria in vertical transects too. Their number at St. 1, but not at St. 2, correlated significantly with all tested environmental parameters (salinity, temperature, solar radiation, nitrate, phosphate and chlorophyll a concentrations), except nitrite concentrations in water. The most probable reason for these correlations is that a common seasonal trend is characteristic of most tested parameters during the March to October period.
Resumo:
A large population of the colonial pelagic tunicate Pyrosoma atlanticum occurred in April 1991 in offshore waters of the Ligurian Sea (Northwestern Mediterranean). The high numbers of colonies caught allowed their vertical distribution and diel migration in the 0-965 m water column to be described as a function of their size. Daytime depths and amplitudes of the migration were correlated with colony size. The amplitude of the migration ranged from 90 m for 3-mm-length colonies to 760 m for 51-mm-length colonies, with a mean amplitude of 410 m for the whole population, all sizes pooled. The results of horizontal hauls at a given depth around sunrise and sunset showed a marked diurnal symmetry of the migratory cycle relative to noon, and that migration of the population was not cohesive. For example, the larger the colonies, the later after sunset they reached the upper layers during their upward migration.
Resumo:
Significant changes in terrestrial and marine environments of Baffin Bay occurred throughout the late Pliocene to Holocene. Upper Pliocene and lowermost Pleistocene sediments contain abundant pollen and spores, which indicates the existence of open, coniferous, boreal forest to forest tundra in areas surrounding Baffin Bay. The late Pliocene-earliest Pleistocene also is characterized by relatively rich, dinoflagellate cyst and acritarch assemblages of boreal character, in which the dominance of Cymatiosphaera and Peridiniaceae may indicate neritic influx of sediments. In contrast, the late-early Pleistocene to Holocene interval is marked by a sparse terrestrial and marine palynoflora, with rare productive intervals. The general paucity of the Pleistocene palynoflora suggests low primary productivity, both on land and offshore, probably caused by cold, dry, high arctic conditions.