561 resultados para North Atlantic westery airflow


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Benthic foraminiferal stable isotope records from four high-resolution sediment cores, forming a depth transect between 1237 m and 2303 m on the South Iceland Rise, have been used to reconstruct intermediate and deep water paleoceanographic changes in the northern North Atlantic during the last 21 ka (spanning Termination I and the Holocene). Typically, a sampling resolution of ~100 years is attained. Deglacial core chronologies are accurately tied to North Greenland Ice Core Project (NGRIP) ice core records through the correlation of tephra layers and changes in the percent abundance of Neogloboquadrina pachyderma (sinistral) with transitions in NGRIP. The evolution from the glacial mode of circulation to the present regime is punctuated by two periods with low benthic d13C and d18O values, which do not lie on glacial or Holocene water mass mixing lines. These periods correlate with the late Younger Dryas/Early Holocene (11.5-12.2 ka) and Heinrich Stadial 1 (14.7-16.8 ka) during which time freshwater input and sea-ice formation led to brine rejection both locally and as an overflow exported from the Nordic seas into the northern North Atlantic, as earlier reported by Meland et al. (2008). The export of brine with low ?13C values from the Nordic seas complicates traditional interpretations of low d13C values during the deglaciation as incursions of southern sourced water, although the spatial extent of this brine is uncertain. The records also reveal that the onset of the Younger Dryas was accompanied by an abrupt and transient (~200-300 year duration) decrease in the ventilation of the northern North Atlantic. During the Holocene, Iceland-Scotland Overflow Water only reached its modern flow strength and/or depth over the South Iceland Rise by 7-8 ka, in parallel with surface ocean reorganizations and a cessation in deglacial meltwater input to the North Atlantic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Elemental C and N percent composition and natural abundance of stable C and N isotopes of plankton species and/or size-fractions collected in several cruises on the N Atlantic Ocean from Greenland to Norway and around Iceland. Determinations included key copepod and krill species. Lipid extraction was performed in some samples to determine carbón isotope depletion factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The onset of abundant ice-rafted debris (IRD) deposition in the Nordic Seas and subpolar North Atlantic Ocean 2.72 millions of years ago (Ma) is thought to record the Pliocene onset of major northern hemisphere glaciation (NHG) due to a synchronous advance of North American Laurentide, Scandinavian and Greenland ice-sheets to their marine calving margins during marine isotope stage (MIS) G6. Numerous marine and terrestrial records from the Nordic Seas region indicate that extensive ice sheets on Greenland and Scandinavia increased IRD inputs to these seas from 2.72 Ma. The timing of ice-sheet expansion on North America as tracked by IRD deposition in the subpolar North Atlantic Ocean, however, is less clear because both Europe and North America are potential sources for icebergs in this region. Moreover, cosmogenic-dating of terrestrial tills on North America indicate that the Laurentide Ice Sheet did not extend to ~39°N until 2.4 ±0.14 Ma, at least 180 ka after the onset of major IRD deposition at 2.72 Ma. To address this problem,we present the first detailed analysis of the geochemical provenance of individual sand-sized IRD deposited in the subpolar North Atlantic Ocean between MIS G6 and 100 (~2.72-2.52 Ma). IRD provenance is assessed using laser ablation lead (Pb) isotope analyses of single ice-rafted (>150 mm) feldspar grains. To track when an ice-rafting setting consistent with major NHG first occurred in the North Atlantic Ocean during the Pliocene intensification of NHG (iNHG), we investigate when the Pb-isotope composition (206Pb/204Pb, 207Pb/204Pb, 208Pb/204Pb) of feldspars deposited at DSDP Site 611 first resembles that determined for IRD deposited at this site during MIS 100, the oldest glacial for which there exists convincing evidence for widespread glaciation of North America. Whilst Quaternary-magnitude IRD fluxes exist at Site 611 during glacials from 2.72 Ma, we find that the provenance of this IRD is not constant. Instead, we find that the Pb isotope composition of IRD at our study site is not consistent with major NHG until MIS G2 (2.64 Ma). We hypothesise that IRD deposition in the North Atlantic Ocean prior to MIS G2 was dominated by iceberg calving from Greenland and Scandinavia. We further suggest that the grounding line of continental ice on Northeast America may not have extended onto the continental shelf and calved significant numbers of icebergs to the North Atlantic Ocean during glacials until 2.64 Ma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Denmark Strait Overflow (DSO) today compensates for the northward flowing Norwegian and Irminger branches of the North Atlantic Current that drive the Nordic heat pump. During the Last Glacial Maximum (LGM), ice sheets constricted the Denmark Strait aperture in addition to ice eustatic/isostatic effects which reduced its depth (today ~630 m) by ~130 m. These factors, combined with a reduced north-south density gradient of the water-masses, are expected to have restricted or even reversed the LGM DSO intensity. To better constrain these boundary conditions, we present a first reconstruction of the glacial DSO, using four new and four published epibenthic and planktic stable-isotope records from sites to the north and south of the Denmark Strait. The spatial and temporal distribution of epibenthic delta18O and delta13C maxima reveals a north-south density gradient at intermediate water depths from sigma0 ~28.7 to 28.4/28.1 and suggests that dense and highly ventilated water was convected in the Nordic Seas during the LGM. However, extremely high epibenthic delta13C values on top of the Mid-Atlantic Ridge document a further convection cell of Glacial North Atlantic Intermediate Water to the south of Iceland, which, however, was marked by much lower density (sigma0 ~28.1). The north-south gradient of water density possibly implied that the glacial DSO was directed to the south like today and fed Glacial North Atlantic Deep Water that has underthrusted the Glacial North Atlantic Intermediate Water in the Irminger Basin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data on zooplankton abundance and biovolume were collected in concert with data on the biophysical environment during the development of the phytoplankton spring bloom at 4 stations in the North Atlantic. Station 1 in the Icelandic Basin was visited four times (26 March, 8 April, 18 April, 27 April), Station 2 in the southern Norwegian Sea was visited three times (30 March, 13 April, 23 April), Station 3 in the North Sea was visited twice (2 April, 15 April) and one intermediate station was visited once. The data were sampled by a Laser Optical Plankton Counter (LOPC, Rolls Royce Canada Ltd.) that was mounted on a carousel water sampler together with a Conductivity-Temperature-Depth sensor (CTD, SBE19plusV2, Seabird Electronics, Inc., USA). Based on the LOPC data, abundance (individuals/m**3) and biovolume (mm3/m**3) were calculated as described in the LOPC Software Operation Manual [(Anonymous, 2006), http://www.brooke-ocean.com/index.html]. LOPC data were regrouped into 49 size groups of equal log10 (body volume) increments (Edvardsen et al., 2002, doi:10.3354/meps227205). LOPC data quality was checked as described in Basedow et al. (2013, doi:10.1016/j.pocean.2012.10.005). CTD data were screened for erroneous (out of range) values and then averaged to the same frequency as the LOPC data (2 Hz). All data were processed using especially developed scripts in the python programming language. The LOPC is an optical instrument designed to count and measure particles (0.1 to 30 mm equivalent spherical diameter) in the water column (Herman et al., 2004; doi:10.1093/plankt/fbh095). The size of particles as equivalent spherical diameter (ESD) was computed as described in the manual (Anonymous, 2006), and in more detail in Checkley et al. (2008, doi:10.4319/lo.2008.53.5_part_2.2123) and Gaardsted et al. (2010, doi:10.1111/j.1365-2419.2010.00558.x).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data on zooplankton abundance and biovolume were collected in concert with data on the biophysical environment during the development of the phytoplankton spring bloom at 4 stations in the North Atlantic. Station 1 in the Icelandic Basin was visited four times (26 March, 8 April, 18 April, 27 April), Station 2 in the southern Norwegian Sea was visited three times (30 March, 13 April, 23 April), Station 3 in the North Sea was visited twice (2 April, 15 April) and one intermediate station was visited once. The data were sampled by a Laser Optical Plankton Counter (LOPC, Rolls Royce Canada Ltd.) that was mounted on a carousel water sampler together with a Conductivity-Temperature-Depth sensor (CTD, SBE19plusV2, Seabird Electronics, Inc., USA). Based on the LOPC data, abundance (individuals/m**3) and biovolume (mm3/m**3) were calculated as described in the LOPC Software Operation Manual [(Anonymous, 2006), http://www.brooke-ocean.com/index.html]. LOPC data were regrouped into 49 size groups of equal log10 (body volume) increments (Edvardsen et al., 2002, doi:10.3354/meps227205). LOPC data quality was checked as described in Basedow et al. (2013, doi:10.1016/j.pocean.2012.10.005). CTD data were screened for erroneous (out of range) values and then averaged to the same frequency as the LOPC data (2 Hz). All data were processed using especially developed scripts in the python programming language. The LOPC is an optical instrument designed to count and measure particles (0.1 to 30 mm equivalent spherical diameter) in the water column (Herman et al., 2004; doi:10.1093/plankt/fbh095). The size of particles as equivalent spherical diameter (ESD) was computed as described in the manual (Anonymous, 2006), and in more detail in Checkley et al. (2008, doi:10.4319/lo.2008.53.5_part_2.2123) and Gaardsted et al. (2010, doi:10.1111/j.1365-2419.2010.00558.x).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data on zooplankton abundance and biovolume were collected in concert with data on the biophysical environment during the development of the phytoplankton spring bloom at 4 stations in the North Atlantic. Station 1 in the Icelandic Basin was visited four times (26 March, 8 April, 18 April, 27 April), Station 2 in the southern Norwegian Sea was visited three times (30 March, 13 April, 23 April), Station 3 in the North Sea was visited twice (2 April, 15 April) and one intermediate station was visited once. The data were sampled by a Laser Optical Plankton Counter (LOPC, Rolls Royce Canada Ltd.) that was mounted on a carousel water sampler together with a Conductivity-Temperature-Depth sensor (CTD, SBE19plusV2, Seabird Electronics, Inc., USA). Based on the LOPC data, abundance (individuals/m**3) and biovolume (mm3/m**3) were calculated as described in the LOPC Software Operation Manual [(Anonymous, 2006), http://www.brooke-ocean.com/index.html]. LOPC data were regrouped into 49 size groups of equal log10 (body volume) increments (Edvardsen et al., 2002, doi:10.3354/meps227205). LOPC data quality was checked as described in Basedow et al. (2013, doi:10.1016/j.pocean.2012.10.005). CTD data were screened for erroneous (out of range) values and then averaged to the same frequency as the LOPC data (2 Hz). All data were processed using especially developed scripts in the python programming language. The LOPC is an optical instrument designed to count and measure particles (0.1 to 30 mm equivalent spherical diameter) in the water column (Herman et al., 2004; doi:10.1093/plankt/fbh095). The size of particles as equivalent spherical diameter (ESD) was computed as described in the manual (Anonymous, 2006), and in more detail in Checkley et al. (2008, doi:10.4319/lo.2008.53.5_part_2.2123) and Gaardsted et al. (2010, doi:10.1111/j.1365-2419.2010.00558.x).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data on zooplankton abundance and biovolume were collected in concert with data on the biophysical environment during the development of the phytoplankton spring bloom at 4 stations in the North Atlantic. Station 1 in the Icelandic Basin was visited four times (26 March, 8 April, 18 April, 27 April), Station 2 in the southern Norwegian Sea was visited three times (30 March, 13 April, 23 April), Station 3 in the North Sea was visited twice (2 April, 15 April) and one intermediate station was visited once. The data were sampled by a Laser Optical Plankton Counter (LOPC, Rolls Royce Canada Ltd.) that was mounted on a carousel water sampler together with a Conductivity-Temperature-Depth sensor (CTD, SBE19plusV2, Seabird Electronics, Inc., USA). Based on the LOPC data, abundance (individuals/m**3) and biovolume (mm3/m**3) were calculated as described in the LOPC Software Operation Manual [(Anonymous, 2006), http://www.brooke-ocean.com/index.html]. LOPC data were regrouped into 49 size groups of equal log10 (body volume) increments (Edvardsen et al., 2002, doi:10.3354/meps227205). LOPC data quality was checked as described in Basedow et al. (2013, doi:10.1016/j.pocean.2012.10.005). CTD data were screened for erroneous (out of range) values and then averaged to the same frequency as the LOPC data (2 Hz). All data were processed using especially developed scripts in the python programming language. The LOPC is an optical instrument designed to count and measure particles (0.1 to 30 mm equivalent spherical diameter) in the water column (Herman et al., 2004; doi:10.1093/plankt/fbh095). The size of particles as equivalent spherical diameter (ESD) was computed as described in the manual (Anonymous, 2006), and in more detail in Checkley et al. (2008, doi:10.4319/lo.2008.53.5_part_2.2123) and Gaardsted et al. (2010, doi:10.1111/j.1365-2419.2010.00558.x).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data on zooplankton abundance and biovolume were collected in concert with data on the biophysical environment during the development of the phytoplankton spring bloom at 4 stations in the North Atlantic. Station 1 in the Icelandic Basin was visited four times (26 March, 8 April, 18 April, 27 April), Station 2 in the southern Norwegian Sea was visited three times (30 March, 13 April, 23 April), Station 3 in the North Sea was visited twice (2 April, 15 April) and one intermediate station was visited once. The data were sampled by a Laser Optical Plankton Counter (LOPC, Rolls Royce Canada Ltd.) that was mounted on a carousel water sampler together with a Conductivity-Temperature-Depth sensor (CTD, SBE19plusV2, Seabird Electronics, Inc., USA). Based on the LOPC data, abundance (individuals/m**3) and biovolume (mm3/m**3) were calculated as described in the LOPC Software Operation Manual [(Anonymous, 2006), http://www.brooke-ocean.com/index.html]. LOPC data were regrouped into 49 size groups of equal log10 (body volume) increments (Edvardsen et al., 2002, doi:10.3354/meps227205). LOPC data quality was checked as described in Basedow et al. (2013, doi:10.1016/j.pocean.2012.10.005). CTD data were screened for erroneous (out of range) values and then averaged to the same frequency as the LOPC data (2 Hz). All data were processed using especially developed scripts in the python programming language. The LOPC is an optical instrument designed to count and measure particles (0.1 to 30 mm equivalent spherical diameter) in the water column (Herman et al., 2004; doi:10.1093/plankt/fbh095). The size of particles as equivalent spherical diameter (ESD) was computed as described in the manual (Anonymous, 2006), and in more detail in Checkley et al. (2008, doi:10.4319/lo.2008.53.5_part_2.2123) and Gaardsted et al. (2010, doi:10.1111/j.1365-2419.2010.00558.x).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data on zooplankton abundance and biovolume were collected in concert with data on the biophysical environment during the development of the phytoplankton spring bloom at 4 stations in the North Atlantic. Station 1 in the Icelandic Basin was visited four times (26 March, 8 April, 18 April, 27 April), Station 2 in the southern Norwegian Sea was visited three times (30 March, 13 April, 23 April), Station 3 in the North Sea was visited twice (2 April, 15 April) and one intermediate station was visited once. The data were sampled by a Laser Optical Plankton Counter (LOPC, Rolls Royce Canada Ltd.) that was mounted on a carousel water sampler together with a Conductivity-Temperature-Depth sensor (CTD, SBE19plusV2, Seabird Electronics, Inc., USA). Based on the LOPC data, abundance (individuals/m**3) and biovolume (mm3/m**3) were calculated as described in the LOPC Software Operation Manual [(Anonymous, 2006), http://www.brooke-ocean.com/index.html]. LOPC data were regrouped into 49 size groups of equal log10 (body volume) increments (Edvardsen et al., 2002, doi:10.3354/meps227205). LOPC data quality was checked as described in Basedow et al. (2013, doi:10.1016/j.pocean.2012.10.005). CTD data were screened for erroneous (out of range) values and then averaged to the same frequency as the LOPC data (2 Hz). All data were processed using especially developed scripts in the python programming language. The LOPC is an optical instrument designed to count and measure particles (0.1 to 30 mm equivalent spherical diameter) in the water column (Herman et al., 2004; doi:10.1093/plankt/fbh095). The size of particles as equivalent spherical diameter (ESD) was computed as described in the manual (Anonymous, 2006), and in more detail in Checkley et al. (2008, doi:10.4319/lo.2008.53.5_part_2.2123) and Gaardsted et al. (2010, doi:10.1111/j.1365-2419.2010.00558.x).