215 resultados para Moorabool Viaduct Sands


Relevância:

10.00% 10.00%

Publicador:

Resumo:

On the mid-Atlantic Coastal Plain of the United States, Paleocene sands and silts are replaced during the Paleocene-Eocene Thermal Maximum (PETM) by the kaolinite-rich Marlboro Clay. The clay preserves abundant magnetite produced by magnetotactic bacteria and novel, presumptively eukaryotic, iron-biomineralizing microorganisms. Using ferromagnetic resonance spectroscopy and electron microscopy, we map the magnetofossil distribution in the context of stratigraphy and carbon isotope data and identify three magnetic facies in the clay: one characterized by a mix of detrital particles and magnetofossils, a second with a higher magnetofossil-to-detrital ratio, and a third with only transient magnetofossils. The distribution of these facies suggests that suboxic conditions promoting magnetofossil production and preservation occurred throughout inner middle neritic sediments of the Salisbury Embayment but extended only transiently to outer neritic sediments and the flanks of the embayment. Such a distribution is consistent with the development of a system resembling a modern tropical river-dominated shelf.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the results of the scanning electron microscopic (SEM) analysis of quartz grains from a selection of samples at Site 1166. Ocean Drilling Program Leg 188 drilled Site 1166 on the Prydz Bay continental shelf, Antarctica, to document onset and fluctuations of East-Antarctic glaciation. This site recovered Upper Pliocene-Holocene glacial sediments directly above Cretaceous through Lower Oligocene sediments recording the transition from preglacial to early glacial conditions. SEM analysis of quartz grains at Site 1166 was used to characterize the glacial and preglacial sediments by their diagnostic textures. Angular edges, edge abrasion as well as arcuate to straight steps, are the most frequent features in glacial deposits. The highest frequency of grains with round edges is present in Middle-Late Eocene fluvio-deltaic sands. However, angular outlines, fractured plates with subparallel linear fractures and edge abrasion indicating glacier influence are also present. Preglacial carbonaceous mudstone and laminated gray claystone show distinctive high relief quartz grains and some chemical weathering on grain surfaces. The results of the microtextural analysis of quartz grains are used to verify some critical periods of ice sheet evolution, such as the transition from the East Antarctic preglacial to glacial conditions on the continental shelf from Middle/Late Eocene to Late Eocene/Early Oligocene time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Continental margin sediments of SE South America originate from various terrestrial sources, each conveying specific magnetic and element signatures. Here, we aim to identify the sources and transport characteristics of shelf and slope sediments deposited between East Brazil and Patagonia (20°-48°S) using enviromagnetic, major element, and grain-size data. A set of five source-indicative parameters (i.e., chi-fd%, ARM/IRM, S0.3T, SIRM/Fe and Fe/K) of 25 surface samples (16-1805 m water depth) was analyzed by fuzzy c-means clustering and non-linear mapping to depict and unmix sediment-province characteristics. This multivariate approach yields three regionally coherent sediment provinces with petrologically and climatically distinct source regions. The southernmost province is entirely restricted to the slope off the Argentinean Pampas and has been identified as relict Andean-sourced sands with coarse unaltered magnetite. The direct transport to the slope was enabled by Rio Colorado and Rio Negro meltwaters during glacial and deglacial phases of low sea level. The adjacent shelf province consists of coastal loessoidal sands (highest hematite and goethite proportions) delivered from the Argentinean Pampas by wave erosion and westerly winds. The northernmost province includes the Plata mudbelt and Rio Grande Cone. It contains tropically weathered clayey silts from the La Plata Drainage Basin with pronounced proportions of fine magnetite, which were distributed up to ~24° S by the Brazilian Coastal Current and admixed to coarser relict sediments of Pampean loessoidal origin. Grain-size analyses of all samples showed that sediment fractionation during transport and deposition had little impact on magnetic and element source characteristics. This study corroborates the high potential of the chosen approach to access sediment origin in regions with contrasting sediment sources, complex transport dynamics, and large grain-size variability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sand and sandstone compositions from different types of basins reflect provenance terranes governed by plate tectonics. One hundred and one thin sections of Upper Miocene to Holocene sand-sized material were examined from DSDP/IPOD Sites in the North Pacific Ocean and the Bering Sea. The Gazzi-Dickinson point-counting method was used to establish compositional characteristics of sands from different tectonic settings. Continental margin forearc sands from the western North America continental margin arc system are clearly different from backarc/marginal-sea sands from the Aleutian intraoceanic arc system. The forearc sands have average QFL percentages of 29-42-29, LmLvLst percentages of 32-34-34, 3 Fmwk%M and 0.82 P/F. Aleutian backarc sands have average QFL percentages of 8-22-69. LmLvLst percentages of 9-85-6, 0.5 Fmwk%M and 0.96 P/F. A trend of increasing QFL%Q and decreasing LmLvLst%Lv westward in the backarc region of the Aleutian Ridge reflects the influence of the Asiatic continental margin. Aleutian backarc sands without continental influence have average QFL percentages of 1-20-79, LmLvLst percentages of 1-98-1, 0 Fmwk%M and 0.99 P/F. Of the continental margin forearc samples, sands on the Astoria Fan (west of the Oregon-Washington trench) contain the highest LmLvLst%Lv and lowest P/F; sands from mixed transform-fault and trench settings (Delgada Fan and Gulf of Alaska samples) have slightly higher Qp/Q (0.03); and sands from the Pacific-Juan de Fuca-North America triple junction have the highest Fmwk%M. Delgada Fan and Gulf of Alaska sands have average QFL percentages of 27-38-35, LmLvLst percentages of 37-26-37, 2 Fmwk%M and 0.86 P/F. Astoria Fan sands have average QFL percentages of 35-41-24, LmLvLst percentages of 30-47-23, 3 Fmwk%M and 0.74 P/F. The triple-junction sands have average QFL percentages of 28-59-13, LmLvLst percentages of 25-26-49, 9 Fmwk%M and 0.87 P/F. The petrologic data from the modern ocean basins examined in this study can provide useful analogs for interpretation of ancient oceanic sequences. Our data suggest some refinements of, but generally substantiate, existing petrologic models relating sandstone composition to tectonic setting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The plasticity characteristics of the Quaternary sediments of the Guatemalan continental margin were determined from five sites drilled during Leg 67 of the Deep Sea Drilling Project. The 64 samples analyzed are from various marine environments, including the Cocos Plate, Middle America Trench, and the trench lower slope to midslope of the Guatemalan continental slope. The sediments are primarily hemipelagic muds and trench-fill turbidites and include quantities of siliceous and calcareous biogenic components. The sediments are generally classified as organic clays of medium to high plasticity, containing micaceous sands and silts, with 14% classed as inorganic clays of medium to high plasticity. High sedimentation rates in Quaternary sediments are the result, in part, of sediment gravity flows that depend upon rheological properties, i.e., sediment plasticity. Mudflows and cohesive debris flows appear to be significant downslope transport mechanisms in these highly plastic sediments.