767 resultados para Modular Integrated Utility Systems Program
Resumo:
Marine sediments harbor an enormous quantity of microorganisms, including a multitude of novel species. The habitable zone of the marine sediment column begins at the sediment-water interface and probably extends to depths of several thousands of meters. Studies of the microbial diversity in this ecosystem have mostly relied on molecular biological techniques. We used a complementary method - analysis of intact polar membrane lipids - to characterize the in-situ microbial community in sediments covering a wide range of environmental conditions from Peru Margin, Equatorial Pacific, Hydrate Ridge, and Juan de Fuca Ridge. Bacterial and eukaryotic phospholipids were only detected in surface sediments from the Peru Margin. In contrast, deeply buried sediments, independent of their geographic location, were dominated by archaeal diether and tetraether lipids with various polar head groups and core lipids. We compared ring distributions of archaeal tetraether lipids derived from polar glycosidic precursors with those that are present as core lipids. The distributions of these related compound pools were distinct, suggestive of different archaeal sources, i.e., the polar compounds derive from sedimentary communities and the core lipids are fossil remnants from planktonic communities with possible admixtures of decayed sedimentary archaea. This in-situ production of distinct archaeal lipid populations potentially affects applications of the TEX86 paleotemperature proxy as demonstrated by offsets in reconstructed temperatures between both pools. We evaluated how varying cell and lipid stabilities will influence the sedimentary pool by using a box-model. The results are consistent with (i) a requirement of continuous inputs of freshly synthesized lipids in subsurface sediments for explaining the observed distribution of intact polar lipids, and (ii) decreasing lipid inputs with increasing burial depth.
Resumo:
Stable isotope and ice-rafted debris records from three core sites in the mid-latitude North Atlantic (IODP Site U1313, MD01-2446, MD03-2699) are combined with records of ODP Sites 1056/1058 and 980 to reconstruct hydrographic conditions during the middle Pleistocene spanning Marine Isotope Stages (MIS) 9-14 (300-540 ka). Core MD03-2699 is the first high-resolution mid-Brunhes record from the North Atlantic's eastern boundary upwelling system covering the complete MIS 11c interval and MIS 13. The array of sites reflect western and eastern basin boundary current as well as north to south transect sampling of subpolar and transitional water masses and allow the reconstruction of transport pathways in the upper limb of the North Atlantic's circulation. Hydrographic conditions in the surface and deep ocean during peak interglacial MIS 9 and 11 were similar among all the sites with relative stable conditions and confirm prolonged warmth during MIS 11c also for the mid-latitudes. Sea surface temperature (SST) reconstructions further reveal that in the mid-latitude North Atlantic MIS 11c is associated with two plateaus, the younger one of which is slightly warmer. Enhanced subsurface northward heat transport in the eastern boundary current system, especially during early MIS 11c, is denoted by the presence of tropical planktic foraminifer species and raises the question how strongly it impacted the Portuguese upwelling system. Deep water ventilation at the onset of MIS 11c significantly preceded surface water ventilation. Although MIS 13 was generally colder and more variable than the younger interglacials the surface water circulation scheme was the same. The greatest differences between the sites existed during the glacial inceptions and glacials. Then a north - south trending hydrographic front separated the nearshore and offshore waters off Portugal. While offshore waters originated from the North Atlantic Current as indicated by the similarities between the records of IODP Site U1313, ODP Site 980 and MD01-2446, nearshore waters as recorded in core MD03-2699 derived from the Azores Current and thus the subtropical gyre. Except for MIS 12, Azores Current influence seems to be related to eastern boundary system dynamics and not to changes in the Atlantic overturning circulation.
Resumo:
Except for a few discontinuous fragments of the Late Cretaceous/Early Cenozoic climate history and depositional environment, the paleoenvironmental evolution of the pre-Neogene central Arctic Ocean was virtually unknown prior to the IODP Expedition 302 (Arctic Ocean Coring Expedition - ACEX) drilling campaign on Lomonosov Ridge in 2004. Here we present detailed organic carbon (OC) records from the entire ca. 200 m thick Paleogene OC-rich section of the ACEX drill sites. These records indicate euxinic "Black Sea-type" conditions favorable for the preservation of labile aquatic (marine algae-type) OC occur throughout the upper part of the early Eocene and the middle Eocene, explained by salinity stratification due to freshwater discharge. The superimposed short-term ("Milankovitch-type") variability in amount and composition of OC is related to changes in primary production and terrigenous input. Prominent early Eocene events of algae-type OC preservation coincide with global d13C events such as the PETM and Elmo events. The Elmo d13C Event has been identified in the Arctic Ocean for the first time.
Resumo:
The early Eocene epoch was characterized by extreme global warmth, which in terrestrial settings was characterized by an expansion of near-tropical vegetation belts into the high latitudes. During the middle to late Eocene, global cooling caused the retreat of tropical vegetation to lower latitudes. In high-latitude settings, near-tropical vegetation was replaced by temperate floras. This floral change has recently been traced as far south as Antarctica, where along the Wilkes Land margin paratropical forests thrived during the early Eocene and temperate Nothofagus forests developed during the middle Eocene. Here we provide both qualitative and quantitative palynological data for this floral turnover based on a sporomorph record recovered at Integrated Ocean Drilling Program (IODP) Site U1356 off the Wilkes Land margin. Following the nearest living relative concept and based on a comparison with modern vegetation types, we examine the structure and diversity patterns of the Eocene vegetation along the Wilkes Land margin. Our results indicate that the early Eocene forests along the Wilkes Land margin were characterized by a diverse canopy composed of plants that today occur in tropical settings; their richness pattern was similar to that of present-day forests from New Caledonia. The middle Eocene forests were characterized by a canopy dominated by Nothofagus and exhibited richness patterns similar to modern Nothofagus forests from New Zealand.
Resumo:
Sr isotope stratigraphy provides a new age model for the first complete section drilled through a deep-water coral mound. The 155-m-long section from Challenger Mound in the Porcupine Sea-bight, southwest of Ireland, is on Miocene siliciclastics and consists entirely of sediments bearing well-preserved cold-water coral Lophelia pertusa. The 87Sr/86Sr values of 28 coral specimens from the mound show an upward-increasing trend, correspond to ages from 2.6 to 0.5 Ma, and identify a significant hiatus from ca. 1.7 to 1.0 Ma at 23.6 m below seafloor. The age of the basal mound sediments coincides with the intensification of Northern Hemisphere glaciations that set up the modern stratification of the northeast Atlantic and enabled coral growth. Mound growth persisted throughout glacial-interglacial fluctuations, reached a maximum rate (24 cm/k.y.) ca. 2.0 Ma, and ceased at 1.7 Ma. Unlike other buried mounds in Porcupine Seabight, Challenger Mound was only partly covered during its growth interruption, and growth restarted ca. 1.0 Ma.
Resumo:
Relatively little is known in detail about the locations of the early Pleistocene ice-sheets responsible for ice-rafted debris (IRD) inputs to the sub-polar North Atlantic Ocean during intensification of northern hemisphere glaciation (iNHG). To shed new light on this problem, we present the first combined in-depth analysis of IRD flux and geochemical provenance of individual sand-sized IRD deposited in the sub-polar North Atlantic Ocean during the earliest large amplitude Pleistocene glacial, marine isotope stage (MIS) 100 (~2.52 Ma), arguably the key glacial during iNHG. IRD provenance is assessed using laser ablation lead (Pb) isotope analyses of single feldspar grains. We find that the Pb-isotope composition (206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb) of individual ice-rafted (>150 µm) feldspars deposited at DSDP Site 611A, ODP Site 981 and IODP Site U1308 during MIS 100 records a shift from predominantly Archaean-aged circum-North Atlantic Ocean continental sources during early glacial ice-rafting events to dominantly Palaeozoic and Proterozoic-aged sources during full glacial conditions. The distribution of feldspars in Pb-Pb space for full glacial MIS 100 more closely resembles that documented for feldspars deposited at the centre of the last glacial IRD belt (at IODP/DSDP Site U1308/609) during ambient (non-Heinrich-event) ice-rafting episodes of MIS 2 (~23.8 ka) than that documented for MIS 5d (~106 ka). Comparison of our early Pleistocene and last glacial cycle datasets suggests that MIS 100 was characterised by abundant iceberg calving from large ice-sheets on multiple continents in the high northern latitudes (not just on Greenland).
Resumo:
We present further %CaCO3 data from Site U1313 across the Pliocene-Pleistocene intensification of Northern Hemisphere glaciation. This data was measured on the U1313 secondary splice. We also present tie points between the primary and secondary splice for this interval based on graphical tuning of L* (sediment lightness).
Resumo:
We present Plio-Pleistocene records of sediment color, %CaCO3, foraminifer fragmentation, benthic carbon isotopes (d13C) and radiogenic isotopes (Sr, Nd, Pb) of the terrigenous component from IODP Site U1313, a reoccupation of benchmark subtropical North Atlantic Ocean DSDP Site 607. We show that (inter)glacial cycles in sediment color and %CaCO3 pre-date major northern hemisphere glaciation and are unambiguously and consistently correlated to benthic oxygen isotopes back to 3.3 million years ago (Ma) and intermittently so probably back to the Miocene/Pliocene boundary. We show these lithological cycles to be driven by enhanced glacial fluxes of terrigenous material (eolian dust), not carbonate dissolution (the classic interpretation). Our radiogenic isotope data indicate a North American source for this dust (~3.3-2.4 Ma) in keeping with the interpreted source of terrestrial plant wax-derived biomarkers deposited at Site U1313. Yet our data indicate a mid latitude provenance regardless of (inter)glacial state, a finding that is inconsistent with the biomarker-inferred importance of glaciogenic mechanisms of dust production and transport. Moreover, we find that the relation between the biomarker and lithogenic components of dust accumulation is distinctly non-linear. Both records show a jump in glacial rates of accumulation from Marine Isotope Stage, MIS, G6 (2.72 Ma) onwards but the amplitude of this signal is about 3-8 times greater for biomarkers than for dust and particularly extreme during MIS 100 (2.52 Ma). We conclude that North America shifted abruptly to a distinctly more arid glacial regime from MIS G6, but major shifts in glacial North American vegetation biomes and regional wind fields (exacerbated by the growth of a large Laurentide Ice Sheet during MIS 100) likely explain amplification of this signal in the biomarker records. Our findings are consistent with wetter-than-modern reconstructions of North American continental climate under the warm high CO2 conditions of the Early Pliocene but contrast with most model predictions for the response of the hydrological cycle to anthropogenic warming over the coming 50 years (poleward expansion of the subtropical dry zones).
Resumo:
Large-amplitude millennial-scale climate oscillations have been identified in late Pleistocene climate archives from around the world. These oscillations appear to be of larger amplitude during times of enlarged ice sheets. This observation suggests the existence of a relationship between large-amplitude millennial variations in climate and extreme glacial conditions and therefore that the emergence of millennial-scale climate variability may be linked to the Pliocene intensification of northern hemisphere glaciation (iNHG). Here we test this hypothesis using new late Pliocene high-resolution (ab. 400 year) records of ice-rafted debris deposition and stable isotopes in planktic foraminiferal calcite (Globigerinoides ruber) generated from Integrated Ocean Drilling Program Site U1313 in the subpolar North Atlantic (a reoccupation of the classic Deep Sea Drilling Project Site 607). Our records span marine oxygen isotope stages (MIS) 103-95 (ab. 2600 to 2400 ka), the first interval during iNHG (ab. 3.5 to 2.5 Ma) in which large-amplitude glacial-interglacial cycles and inferred sea level changes occur. Our records reveal small-amplitude variability at periodicities of ab. 1.8 to 6.2 kyr that prevails regardless of (inter)glacial state with no significant amplification during the glacials MIS 100, 98, and 96. These findings imply that the threshold for the amplification of such variability to the proportions seen in the marine archive of the last glacial was not crossed during the late Pliocene and, in view of all available data, likely not until the Mid-Pleistocene Transition.