497 resultados para Late Cretaceous-Paleogene reactivation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Late Cretaceous (Maastrichtian)-Quaternary summary biostratigraphies are presented for Ocean Drilling Program (ODP) Leg 189 Sites 1168 (West Tasmanian Margin), 1170 and 1171 (South Tasman Rise), and 1172 (East Tasman Plateau). The age models are calibrated to magnetostratigraphy and integrate both calcareous (planktonic foraminifers and nannofossils) and siliceous (diatoms and radiolarians) microfossil groups with organic walled microfossils (organic walled dinoflagellate cysts, or dinocysts). We also incorporate benthic oxygen isotope stratigraphies into the upper Quaternary parts of the age models for further control. The purpose of this paper is to provide a summary age-depth model for all deep-penetrating sites of Leg 189 incorporating updated shipboard biostratigraphic data with new information obtained during the 3 yr since the cruise. In this respect we provide a report of work to November 2003, not a final synthesis of the biomagnetostratigraphy of Leg 189, yet we present the most complete integrated age model for these sites at this time. Detailed information of the stratigraphy of individual fossil groups, paleomagnetism, and isotope data are presented elsewhere. Ongoing efforts aim toward further integration of age information for Leg 189 sites and will include an attempt to correlate zonation schemes for all the major microfossil groups and detailed correlation between all sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Toba lake event, the Australasian microtektite event, and the Cretaceous/Paleogene boundary were analyzed on the basis of foraminifers, carbonate content, trace elements, and spherules (microtektites). The Toba ash event, recovered in Hole 758C, may have had minor influences on the foraminiferal populations. The Australasian tektite event has probably some influence on foraminiferal ecology, because the larger specimens become scarce just above the microtektite layer. Microtektites recovered from Hole 758B closely resemble spherules recovered from several Cretaceous/Paleogene boundary localities in North America. The Cretaceous/Paleogene spherules, however, are usually larger and are completely altered to goyazite in the terrestrial environment and to smectite in a marine environment. The Cretaceous/Paleogene boundary of Hole 752B does not show obvious anomalous trace-element concentrations, and iridium concentrations are below our detection limits. The trace-element pattern is dominated by the alternation of chalk with volcanic ash layers above the Cretaceous/Paleogene boundary.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trace fossils and ichnofabric were examined from cores of Late Cretaceous to Quaternary age recovered from the Kerguelen Plateau, Indian Ocean. Nearly all of the strata are completely bioturbated, with ichnofabric index 6 most commonly recorded. Preserved discrete trace fossils include Chondrites, Planolites, Zoophycos, and Thalassinoides. A continuous Cretaceous/Tertiary boundary section preserved at ODP Site 738 occurs within a 15-cm-thick interval of laminated sediments. The lack of bioturbation indicates the disappearance of bioturbating organisms from the seafloor, possibly as a result of the same factors that caused the mass extinction or changes in other environmental conditions - most probably, bottom-water oxygen concentrations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On the basis of lithologic, foraminiferal, seismostratigraphic, and downhole logging characteristics, we identified seven distinctive erosional unconformities at the contacts of the principal depositional sequences at Site 612 on the New Jersey Continental Slope (water depth 1404 m). These unconformities are present at the Campanian/Maestrichtian, lower Eocene/middle Eocene, middle Eocene/upper Eocene, upper Eocene/lower Oligocene, lower Oligocene/upper Miocene, Tortonian/Messinian, and upper Pliocene/upper Pleistocene contacts. The presence of coarse sand or redeposited intraclasts above six of the unconformities suggests downslope transport from the adjacent shelf by means of sediment gravity flows, which contributed in part to the erosion. Changes in the benthic foraminiferal assemblages across all but the Campanian/Maestrichtian contact indicate that significant changes in the seafloor environment, such as temperature and dissolved oxygen content, took place during the hiatuses. Comparison with modern analogous assemblages and application of a paleoslope model where possible, indicate that deposition took place in bathyal depths throughout the Late Cretaceous and Cenozoic at Site 612. An analysis of two-dimensional geometry and seismic fades changes of depositional sequences along U.S.G.S. multichannel seismic Line 25 suggests that Site 612 was an outer continental shelf location from the Campanian until the middle Eocene, when the shelf edge retreated 130 km landward, and Site 612 became a continental slope site. Following this, a prograding prism of terrigenous debris moved the shelf edge to near its present position by the end of the Miocene. Each unconformity identified can be traced widely on seismic reflection profiles and most have been identified from wells and outcrops on the coastal plain and other offshore basins of the U.S. Atlantic margin. Furthermore, their stratigraphic positions and equivalence to similar unconformities on the Goban Spur, in West Africa, New Zealand, Australia, and the Western Interior of the U.S. suggest that most contacts are correlative with the global unconformities and sea-level falls of the Vail depositional model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At Sites 548 and 550 of DSDP Leg 80 several condensed sedimentary sections contain various types of polymetallic crusts. The relationships between mineralogic and geochemical data in the sections have been studied in the context of the biostratigraphic and sedimentologic results. The diagenetic evolution during periods of low accumulation rate varies according to depth and sedimentary environment. At Site 548 on the continental margin, the phosphatic and manganiferous crusts are similar to those related to upwelling influences before Late Cretaceous deposition. At Site 550 the upper Paleocene cherts, deposited directly on oceanic crust, are overlain by pelagic brown clays containing diagenetic manganiferous concretions characterized by very high Sr and Ba contents. The origin of these small nodules is probably related to the authigenesis of fecal pellets. The upper Eocene indurated section is made up of authigenic zeolites, clays, and Fe-Mn phases and is similar to the volcanic-sedimentary deposits described in deep basins and seamounts of the Pacific. These crusts and a polynucleated nodule within the overlying sediments have geochemical characteristics (high Ni, Co, and Cu contents) similar to those formed in the deep ocean under volcanic influences during periods of low sedimentation rates or sedimentary hiatuses. Volcaniclastic material is ubiquitous and peculiarly abundant in Eocene sections and can be related to the volcanic formation of Iceland in the North Atlantic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Late Campanian and Maastrichtian benthic foraminifers are recorded from 12 samples from Ocean Drilling Program (ODP) Leg 183, Cores 183-1138A-52R through 63R (487.3-602.4 meters below seafloor), Kerguelen Plateau, Indian Ocean, and Danian benthics from one sample in the same section. The entire late Maastrichtian foraminifer fauna is noted from a dredge sample 220 km to the north. The structure of the fauna is compared with the Cenomanian-Turonian of the nearby Eltanin core E54-7. Faunas are reviewed in terms of planktonic percentage, composition, epifaunal/infaunal ratios, and dominance/diversity indices. The region was in the cool Austral Faunal Province through the Campanian-Maastrichtian and was probably warmer in the Cenomanian-Turonian. The ODP section is now 1600 meters below sea level and has subsided several hundred meters since deposition. Its fauna is dominated by epifaunal species suggesting little influence of upwelling. The dredge location has subsided little. Its fauna has a high infaunal content consistent with significant influence of upwelling near the plateau edge. The dominant benthic species remain constant through the ODP Cretaceous section, but subdominance changes, and the section is divided into three informal zones based on dominance/subdominance characteristics of the benthic fauna. Brief taxonomic comments are made on several species and some are figured.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The modern Arctic Ocean is regarded as a barometer of global change and amplifier of global warming (Graversen et al., 2008, doi:10.1038/nature06502) and therefore records of past Arctic change are critical for palaeoclimate reconstruction. Little is known of the state of the Arctic Ocean in the greenhouse period of the Late Cretaceous epoch (65-99 million years ago), yet records from such times may yield important clues to Arctic Ocean behaviour in near-future warmer climates. Here we present a seasonally resolved Cretaceous sedimentary record from the Alpha ridge of the Arctic Ocean. This palaeo-sediment trap provides new insight into the workings of the Cretaceous marine biological carbon pump. Seasonal primary production was dominated by diatom algae but was not related to upwelling as was previously hypothesized (Kitchell and Clark, 1982, doi:10.1016/0031-0182(82)90087-6). Rather, production occurred within a stratified water column, involving specially adapted species in blooms resembling those of the modern North Pacific subtropical gyre (Dore et al., 2008, doi:10.1016/j.pocean.2007.10.002), or those indicated for the Mediterranean sapropels (Kemp et al., 1999, doi:10.1038/18001). With increased CO2 levels and warming currently driving increased stratification in the global ocean (Sarmiento et al., 1998, doi:10.1038/30455), this style of production that is adapted to stratification may become more widespread. Our evidence for seasonal diatom production and flux testify to an ice-free summer, but thin accumulations of terrigenous sediment within the diatom ooze are consistent with the presence of intermittent sea ice in the winter, supporting a wide body of evidence for low temperatures in the Late Cretaceous Arctic Ocean (Falcon-Lang et al., 2004, doi:10.1016/j.palaeo.2004.05.016; Amiot et al., 2004, doi:10.1016/j.epsl.2004.07.015; Otto-Bliesner et al., 2002, doi:10.1029/2001JD000821), rather than recent suggestions of a 15 °C mean annual temperature at this time (Jenkyns et al., 2004, doi:10.1038/nature03143).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To explore cause and consequences of past climate change, very accurate age models such as those provided by the astronomical timescale (ATS) are needed. Beyond 40 million years the accuracy of the ATS critically depends on the correctness of orbital models and radioisotopic dating techniques. Discrepancies in the age dating of sedimentary successions and the lack of suitable records spanning the middle Eocene have prevented development of a continuous astronomically calibrated geological timescale for the entire Cenozoic Era. We now solve this problem by constructing an independent astrochronological stratigraphy based on Earth's stable 405 kyr eccentricity cycle between 41 and 48 million years ago (Ma) with new data from deep-sea sedimentary sequences in the South Atlantic Ocean. This new link completes the Paleogene astronomical timescale and confirms the intercalibration of radioisotopic and astronomical dating methods back through the Paleocene-Eocene Thermal Maximum (PETM, 55.930 Ma) and the Cretaceous-Paleogene boundary (66.022 Ma). Coupling of the Paleogene 405 kyr cyclostratigraphic frameworks across the middle Eocene further paves the way for extending the ATS into the Mesozoic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Astronomical tuning of sedimentary records to precise orbital solutions has led to unprecedented resolution in the geological time scale. However, the construction of a consistent astronomical time scale for the Paleocene is controversial due to uncertainties in the recognition of the exact number of 405-kyr eccentricity cycles and accurate correlation between key records. Here, we present a new Danian integrated stratigraphic framework using the land-based Zumaia and Sopelana hemipelagic sections from the Basque Basin and deep-sea records drilled during Ocean Drilling Program (ODP) Legs 198 (Shatsky Rise, North Pacific) and 208 (Walvis Ridge, South Atlantic) that solves previous discrepancies. The new coherent stratigraphy utilises composite images from ODP cores, a new whole-rock d13C isotope record at Zumaia and new magnetostratigraphic data from Sopelana. We consistently observe 11 405-kyr eccentricity cycles in all studied Danian successions. We achieve a robust correlation of bioevents and stable isotope events between all studied sections at the ~100-kyr short-eccentricity level, a prerequisite for paleoclimatic interpretations. Comparison with and subsequent tuning of the records to the latest orbital solution La2011 provides astronomically calibrated ages of 66.022 ± 0.040 Ma and 61.607 ± 0.040 Ma for the Cretaceous-Paleogene (K-Pg) and Danian-Selandian 105 (D-S) boundaries respectively. Low sedimentation rates appear common in all records in the mid-Danian interval, including conspicuous condensed intervals in the oceanic records that in the past have hampered the proper identification of cycles. The comprehensive interbasinal approach applied here reveals pitfalls in time scale construction, filtering techniques in particular, and indicates that some caution and scrutiny has to be applied when building orbital chronologies. Finally, the Zumaia section, already hosting the Selandian Global Boundary Stratotype Section and Point (GSSP), could serve as the global Danian unit stratotype in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At the request of the Leg 80 scientific party, selected samples of Cretaceous age were processed by X-ray diffraction at the mineralogy laboratories at the Ecole des Mines (Albian to Late Cretaceous samples) and at the Institut de Géologie at Dijon (Barremian samples). The results were used in developing the lithostratigraphy and sedimentology discussed in this volume by Rat et al. 1985 (doi:10.2973/dsdp.proc.80.140.1985) in their study of Barremian-Albian paleoenvironment, by Graciansky and Gillot in their study of Albian and Cenomanian limestones, and by Graciansky and Bourbon in their paleoenvironmental reconstructions for the Late Cretaceous chalks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report well-dated Late Cretaceous and Early Tertiary precessional climatic cycles, recorded by rhythmic carbonate maxima and minima in South Atlantic deep sea sites. Spectral analyses of digitized sediment color, a suitable carbonate proxy, show prominent regularities in the spacing marl-carbonate beds. Magnetostratigraphic dating over a number of magnetic chrons constrains the duration of the cycles, which can be detected over at least 20 Myr of sedimentation at 7 coring locations. Their mean absolute period of 23.5 +/- 4.4kyr agrees closely with the predicted late Cretaceous precessional period of 20.8 kyr. Because they can be matched to a physical forcing mechanism with a known repeat time, the cycles offer a new high-resolution tool to measure rates of climate change before and after the Cretaceous-Tertiary (K/T) boundary. From counts of carbonate cycles, we derive the position of the K/T boundary within C29R at 350 kyr after the base of the reversal. The constancy of cycle thickness (linearly related to sedimentation rate) and amplitude up to the "boundary clay" does not give evidence for climate instability preceding the boundary. Orbital chronometry records a step-function decrease in sediment accumulation rate at the Cretaceous-Tertiary boundary that is consistent with a geologically instantaneous event.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Benthic foraminiferal assemblages in Mesozoic and Cenozoic sediments were studied at Sites 511, 512, 513, and 514 drilled during Leg 71 in the southwestern Atlantic on the Maurice Ewing Bank and in the Argentine Basin. Benthic foraminifers in almost all stratigraphic subdivisions of Sites 511 and 512 reflect the gradual subsidence of the Falkland Plateau from shelf depths in the Barremian-Albian, when a semiclosed basin with restricted circulation of water masses and anaerobic conditions existed, to lower bathyal depths in the Late Cretaceous and Cenozoic, with an abrupt acceleration at the boundary of Lower and Upper Cretaceous. The composition, distribution, and preservation of Late Cretaceous assemblages of benthic foraminifers suggest considerable fluctuations of the foraminiferal lysocline and the CCD. This is evidenced by dissolution facies and foraminiferal assemblages in which agglutinated and resistant calcareous forms predominated during high stands of the CCD and by calcareous facies in which rich assemblages of calcareous species predominated during low stands. The highest position of the CCD on the Plateau (less than 1500-2000 m) was in the late Cenomanian, Turonian, and Coniacian. In the Santonian and Campanian the CCD was at depths below 1500-2000 meters. At the end of the Campanian the CCD shifted again to depths comparable with those of Cenomanian and Turonian time. In the latest Campanian and the Maestrichtian the CCD was low and nanno-foraminiferal oozes with a rich assemblage of benthic foraminifers accumulated. Foraminiferal assemblages at Sites 513 and 514 in the Argentine Basin also testify to oceanic subsidence from lower bathyal depths in the Oligocene to abyssal ones at present. This process was complicated by the influence of geographical migrations of the Polar Front caused by extensions of the ice sheet in the Antarctic after the opening of the Drake Passage during the Oligocene. In Mesozoic and Cenozoic deposits of the Falkland Plateau and the Argentine Basin seven assemblages of benthic foraminifers were distinguished by age: early-middle Albian, middle-late Albian, Late Cretaceous (including four groups), middle Eocene, late Eocene-early Miocene, middle-late Miocene, and Pliocene-Quaternary. The Albian assemblages contain many species common to the foraminiferal fauna of the Austral Biogeographical Province. The Late Cretaceous assemblage contains, along with Austral species, species common to foraminifers of North America, Western Europe, the Russian platform, and the south of the U.S.S.R. Deep-sea cosmopolitan species prevail in Cenozoic assemblages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The southernmost record of Maestrichtian pelagic carbonate sedimentation was recovered from ODP Leg 113 Holes 689B and 690C, drilled on the Maud Rise in the eastern Weddell Sea sector of the Southern Ocean (65°S). Well preserved and abundant planktonic foraminifers occur throughout Maestrichtian cores from both holes, providing a nearly complete biogeographic and biostratigraphic history of this region. Diversity is low compared to tropical and subtropical assemblages, with a maximum within sample diversity of 16 planktonic foraminifer species and a diversity total for the Maestrichtian of 24 species. The assemblages are dominated throughout by Heterohelix, Globigerinelloides, and a new species of Archaeoglobigerina, whereas keeled taxa are completely absent from the lower Maestrichtian and rare in the middle through upper Maestrichtian sediments. Three planktonic foraminifer species are described as new and are recognized as being endemic to the Austral Province. These include Archaeoglobigerina australis n. sp., Hedbergella sliteri n. sp., and Archaeoglobigerina mateola n. sp. The former two species were previously illustrated in reports on Late Cretaceous foraminifers from the Falkland Plateau and the northern Antarctic Peninsula. Two keeled and five non-keeled planktonic foraminifers, previously not found in high latitude Maestrichtian sediments, first appeared at the Maud Rise during the late early and late Maestrichtian. Correlation with their stratigraphic ranges in low latitude sequences shows that their first appearance datums are considerably younger at the Maud Rise than in the lower latitudes. The most likely explanation for this observation is that there was a warming in the south polar region during the late early and late Maestrichtian and a concomitant poleward migration of stenothermal taxa. However, oxygen isotopic paleotemperature results from Sites 689 and 690 (Barrera and Huber, 1990, doi:10.2973/odp.proc.sr.113.137.1990) show a long-term cooling trend throughout the Maestrichtian, indicating that other factors may have played a more important role than temperature in the distribution of Maestrichtian planktonic foraminifers. A new biostratigraphic scheme is proposed for the Antarctic because of the absence of thermophilic planktonic foraminifers used to identify existing low to middle latitude zones. The Globigerinelloides impensus Partial Range Zone is defined for the late Campanian-Maestrichtian, the Globotruncanita havanensis Partial Range Zone is redefined for the early to late early Maestrichtian, and the Abathomphalus mayaroensis Total Range Zone is recognized. Good quality magnetic polarity data obtained from both Maud Rise sites (Hamilton, 1990, doi:10.2973/odp.proc.sr.113.179.1990) enables magnetobiostratigraphic correlation of twelve foraminifer datums with the geomagnetic polarity time scale of Haq et al. (1987). The geochronology thus obtained is crucial for accurate cross-latitudinal correlation and interpretation of the paleoceanographic history of the Antarctic region during the Maestrichtian time period.