708 resultados para Inductively coupled argon plasma emission spectroscopy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A geochemical investigation was carried out on two sediment cores collected at 2 and 5 km from the Rainbow hydrothermal vent site. Bulk sediment compositions indicate that these cores record clear enrichments in Fe, Cu, Mn, V, P and As from hydrothermal plume fallout (Cave et al., 2002, doi:10.1016/S0016-7037(02)00823-2). Sequential dissolution of the bulk sediments has been used to discriminate between a leach (biogenic and oxy-hydroxide) component and a residual phase (detrital and sulphide/sulphate fractions). Major element data (Al, Fe, Ti, Mn, Mg, Ca, Si and index%) reveal that the hydrothermal input, as recorded in the leach phase, is much stronger than apparent from bulk sediment analyses alone. REE patterns for the leach phase record contributions from both biogenic carbonate (mimicking seawater REE patterns) and hydrothermal oxy-hydroxides, with the latter exhibiting positive Eu anomalies (hydrothermal derived) and negative Ce anomalies (seawater derived). Based on major element and REE data, the residue contains contributions from aeolian dust input, local MORB material and a hydrothermal component. Ternary REE mixing calculations indicate that most of the REE within the residual fraction (~80%) is derived from hydrothermal material, while detrital contributions to the REE budget, as deep-sea clay and volcanic debris, are <20%. By combining bulk and REE data for the various end-member components of the residue, we calculate that the chemical composition of the residue hydrothermal end-member is high in Ca (6-15%) and with a Nd/Sr ratio of 0.004. These characteristics indicate the presence of low-solubility hydrothermal sulphate (rather than sulphide) material within the residue component of Rainbow hydrothermal sediments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Geochemical and rock magnetic investigations of sediments from three sites on the continental margin off Argentina and Uruguay were carried out to study diagenetic alteration of iron minerals driven by anaerobic oxidation of methane (AOM). The western Argentine Basin represents a suitable sedimentary environment to study nonsteady-state processes because it is characterized by highly dynamic depositional conditions. Mineralogic and bulk solid phase data document that the sediment mainly consists of terrigenous material with high contents of iron minerals. As a typical feature of these deposits, distinct minima in magnetic susceptibility (k) are observed. Pore water data reveal that these minima in susceptibility coincide with the current depth of the sulfate/methane transition (SMT) where HS- is generated by the process of AOM. The released HS- reacts with the abundant iron (oxyhydr)oxides resulting in the precipitation of iron sulfides accompanied by a nearly complete loss of magnetic susceptibility. Modeling of geochemical data suggest that the magnetic record in this area is highly influenced by a drastic change in mean sedimentation rate (SR) which occurred during the Pleistocene/Holocene transition. We assume that the strong decrease in mean SR encountered during this glacial/interglacial transition induced a fixation of the SMT at a specific depth. The stagnation has obviously enhanced diagenetic dissolution of iron (oxyhydr)oxides within a distinct sediment interval. This assumption was further substantiated by numerical modeling in which the mean SR was decreased from 100 cm/kyr during glacial times to 5 cm/kyr in the Holocene and the methane flux from below was fixed to a constant value. To obtain the observed geochemical and magnetic patterns, the SMT must remain at a fixed position for ~9000 yrs. This calculated value closely correlates to the timing of the Pleistocene/Holocene transition. The results of the model show additionally that a constant high mean SR would cause a concave-up profile of pore water sulfate under steady state conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sediment cores retrieved in the Benguela coastal upwelling system off Namibia show very distinct enrichments of solid phase barium at the sulfate/methane transition (SMT). These barium peaks represent diagenetic barite (BaSO4) fronts which form by the reaction of upwardly diffusing barium with interstitial sulfate. Calculated times needed to produce these barium enrichments indicate a formation time of about 14,000 yr. Barium spikes a few meters below the SMT were observed at one of the investigated sites (GeoB 8455). Although this sulfate-depleted zone is undersaturated with respect to barite, the dominant mineral phase of these buried barium enrichments was identified as barite by scanning electron microscopy (SEM). This is the first study which reports the occurrence/preservation of pronounced barite enrichments in sulfate-depleted sediments buried a few meters below the SMT. At site GeoB 8455 high concentrations of dissolved barium in pore water as well as barium in the solid phase were observed. Modeling the measured barium concentrations at site GeoB 8455 applying the numerical model CoTReM reveals that the dissolution rate of barite directly below the SMT is about one order of magnitude higher than at the barium enrichments deeper in the sediment core. This indicates that the dissolution of barite at these deeper buried fronts must be retarded. Thus, the occurrence of the enrichments in solid phase barium at site GeoB 8455 could be explained by decreased dissolution rates of barite due to the changes in the concentration of barite in the sediment, as well as changes in the saturation state of fluids. Furthermore, the alteration of barite into witherite (BaCO3) via the transient phase barium sulfide could lead to the preservation of a former barite front as BaCO3. The calculations and modeling indicate that a relocation of the barite front to a shallower depth occurred between the last glacial maxium (LGM) and the Pleistocene/Holocene transition. We suggest that an upward shift of the SMT occurred at that time, most likely as a result of an increase in the methanogenesis rates due to the burial of high amounts of organic matter below the SMT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As a part of the Russian-German project "Siberian River-Runoff (SIRRO)" the major element composition of the dissolved load and the major and trace element composition of particulate load and bottom sediment of the Yenisei River and Estuary were analyzed and examined in context of the basin lithology and climate. In addition, the processes controlling the transformation of the river load in the estuarine mixing zone were investigated. The chemical composition of the dissolved and particulate load of the Yenisei fluvial endmember is generally comparable to that of other major world rivers. The dissolved load is chiefly controlled by carbonate weathering and the chemical composition of the river suspended particulate matter (SPM) is similar to that of the North American Shale Composite (NASC), which represents the weathering product of the upper continental crust. The Chemical Index of Alteration (CIA) of the Yenisei SPM amounts to 71, which indicates moderate chemical weathering. With regard to the SPM geochemistry, the Yenisei occupies an intermediate position between the adjacent rivers Khatanga and the Lena. Drastic changes in the composition of the river load are seen in the mixing zone between fresh and salt water. While dissolved Na, Ca, Mg, K, CI, S04, F, Br, Sr and HC03 behave conservatively, dissolved Fe is completely removed from solution at very low salinities. Particulate Mn exhibits a pronounced mid-salinity minimum concomitant with a maximum of dissolved Mn, which is probably related to suboxic conditions in the area of the so-called "marginal filter", where highest turbidities are found. The Mn-minimum in SPM is paralleled by depletions of the elements Ba, Zn, Cd, Ni, Cu and V, which can be associated with manganese particles. The estuarine bottom sediments are composed of mud and sand and the sedimentological parameters of the bottom sediments have to be considered for the interpretation of the bulk geochemical data. The chemical composition of the mud is comparable to the SPM, whereas the sand is relatively enriched in Si/Al, Ba/Al, Zr/Al and Sr/Al ratios and depleted in transition metals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Horizons of several types of Upper Jurassic to Lower Cretaceous manganese nodules occur locally in sequences of radiolarian cherts within the Nicoya Ophiolite Complex (NW Costa Rica). Field studies, X-ray diffraction analysis, petrographic, chemical and experimental studies give evidence of a sedimentary, early diagenetic origin of the nodules, in contrast to earlier suggestions. Smooth, discoidal, compact and very dense nodules with diameters of some mm to 9 cm dominate. They are characterized by braunite, hollandite, pyrolusite and quartz as well as 39-61% Mn, 0.9-1.6% Fe, 5-26% SiO2, 1.3-1.9% Al2O3, 1.5-3.0% Ba, 460-5400 ppm Cu, 85-340 ppm Ni and 40-130 ppm Co, among others. It is suggested that the original mineralogy (todorokite?) was altered during thermometamorphic (braunite) and hydrothermal (hollandite. pyrolusite) events. Petrographic similarities between the fossil nodules and modern deep-sea nodules are striking. Using standard hydrothermal techniques in an experimental study it is shown that under special conditions, braunite can be produced from modern nodule material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Geochemical compositions and Sr and Nd isotopes were measured in two cores collected ~2 and 5 km from the Rainbow hydrothermal vent site on the Mid-Atlantic Ridge. Overall, the cores record enrichments in Fe and other metals from hydrothermal fallout, but sequential dissolution of the sediments allows discrimination between a leach phase (easily leachable) and a residue phase (refractory). The oxy-anion and transition metal distribution combined with rare earth element (REE) patterns suggest that (1) the leach fraction is a mixture of biogenic carbonate and hydrothermal Fe-Mn oxy-hydroxide with no significant contribution from detrital material and (2) >99.5% of the REE content of the leach fraction is of seawater origin. In addition, the leach fraction has an average 87Sr/86Sr ratio indistinguishable from modern seawater at 0.70916. Although we lack the epsilon-Nd value of present-day deep water at the Rainbow vent site, we believe that the REE budget of the leach fraction is predominantly of seawater origin. We suggest therefore that the leach fraction provides a record of local seawater epsilon-Nd values. Nd isotope data from these cores span the period of 4-14 ka (14C ages) and yield epsilon-Nd values for North East Atlantic Deep Water (NEADW) that are higher (-9.3 to -11.1) than those observed in the nearby Madeira Abyssal Plain from the same depth (-12.4 ± 0.9). This observation suggests that either the Iceland-Scotland Overflow Water (ISOW) and Lower Deep Water contributions to the formation of NEADW are higher along the Mid-Atlantic Ridge than in the surrounding basins or that the relative proportion of ISOW was higher during this period than is observed today. This study indicates that hydrothermal sediments have the potential to provide a higher-resolution record of deep water epsilon-Nd values, and hence deepwater circulation patterns in the oceans, than is possible from other types of sediments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A suite of conjugate pore fluid and sediment samples were collected during Leg 169 of the ODP from within the clastic sedimentary sequences which host massive sulphides at Central Hill, Escanaba Trough (ODP Site 1038). We report the alkali element and boron, and Li and B isotope data for these samples. Relative to a reference site (Site 1037) located outside the zone of high heat flow, pore fluids from Site 1038 show a wide variation in Cl (300-800 mM), and have far higher concentrations of Li (up to 6.2 mM), B (up to 9.7 mM), Cs (up to 5.0 mM), and Rb (up to 97 mM). We show that the pore fluids are derived from hydrothermal circulation that has extended into the basement oceanic crust, with input of the alkali elements and B as the rising hydrothermal fluids interact geochemically with the overlying clastic sediments. There is, however, no marked depletion of these elements in the conjugate sediments, suggesting that there has been advective transport of fluids away from the primary hydrothermal reaction site. This is supported by modelling of the Li and B isotope systematics of the pore fluids, which shows that they record extensive formation of secondary minerals during cooling of the fluids from ~350 to ~20ºC. Precipitation of metal-rich sulphides would have occurred prior to the formation of these minerals, thus, the pore fluid Li and B isotope data can place important constraints on the locus of sulphide deposition beneath the seafloor at Escanaba.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-resolution down-core analyses of the solid phase content of total barium (Batot) and total organic carbon (TOC) back to 25 kyr B.P. were performed on a gravity core from the upper continental slope off Cape Yubi (Morocco). The observed discrepancy between the two potential paleoproductivity proxies, Batot and TOC, initiated supplementary examinations of the pore water, the geochemistry of the clay fraction, X-ray diffraction analyses, and the application of a sequential Ba extraction method of selected samples. Additionally, we analyzed down-core samples of the planktonic foraminifera Turborotalita quinqueloba and Globorotalia inflata for their Ba/Ca ratios. These analyses, which were performed for the first time on these species, were used to reconstruct past oceanic Ba concentrations. We suggest that in the study area, which is characterized by high accumulation rates, the preserved TOC content is a valuable proxy for past primary productivity, whereas the solid phase Batot contents appear to be affected by other mechanisms and factors. Peaks of total barium content in the clay fraction and of Ba/Ca ratios in the planktonic foraminifera shells found during the Younger Dryas and the Heinrich 1 event are likely to result from increased meltwater influx into the northern North Atlantic. We suggest that Ba-enriched meltwater was transmitted by the eastern boundary current system from higher latitudes to the region of the Canary Islands. Total barium contents of the clay fraction (Batot,clay) and Ba/Ca in planktonic foraminifera shells seem to be reliable proxies for this discharge of meltwater.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Leg 173 Site 1067 and 1068 amphibolites and metagabbros from the west Iberia margin exhibit variable whole-rock compositions from primitive to more evolved (Mg numbers = 49-71) that are generally incompatible trace and rare earth element enriched (light rare earth element [LREE] = 11-89 x chondrite). The Site 1067 amphibolites are compositionally similar to the basalts reported at Site 899 from this same region, based on trace and rare earth element contents. The Site 1068 amphibolites and metagabbros are similar to the Site 899 diabases but are more LREE enriched. However, the Sites 1067 and 1068 amphibolites and metagabbros are not compositionally similar to the Site 900 metagabbros, which are from the same structural high as the Leg 173 samples. The Leg 173 protoliths may be represented by basalts, diabases, and/or fine-grained gabbros that formed from incompatible trace element-enriched liquids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a gravity core from the eastern Mediterranean Sea, a chemically and mineralogically distinct, 5.5-cm-thick layer is present above sapropel S-1 and overlain by hemipelagic marls. Calcite is completely absent in this exotic layer, dolomite is present only in small amounts, and the Cr concentrations are significantly enhanced. The layer was deposited primarily under reducing conditions, but the distributions of redox-sensitive elements show that a large part of the exotic layer is now oxidised by a downward-progressing oxidation front. Sediments from within the nearby anoxic, hypersaline Urania Basin are similar to those from the exotic layer, in particular in S-, C-, and O-isotope distributions of pyrite and dolomite, as well as increased Cr concentrations. Mud expulsion due to expansion of gas-rich mud is proposed to explain the presence of the exotic layer outside the Urania Basin. The deposition of an anoxic layer above S-1 shielded the sapropel from oxidation which resulted in the rare occurrence of a complete preservation of S-1 and provides the first minimum age for the start of anoxic mud accumulation in the Urania Basin.