251 resultados para HINGE POINTS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Planktic d18O and d13C records and point count records of biogenic, volcanic, and nonvolcanic terrigenous [ice-rafted debris (IRD)] sediment components from Hole 919A in the Irminger basin, northern North Atlantic provide a comprehensive dataset from which a paleoceanographic reconstruction for the last 630 kyr has been developed. The paleoceanographic evolution of the Irminger basin during this time contains both long-term patterns and significant developmental steps. One long-term pattern observed is the persistent deposition of hematite-stained ice-rafted debris. This record suggests that the modern and late Pleistocene discharges of icebergs from northern redbed regions to the Irminger Sea lie in the low end of the range observed over the last 630 kyr. In addition, Arctic front fluctuations appear to have been the main controlling factor on the long-term accumulation patterns of IRD and planktic biogenic groups. The Hole 919A sediment record also contains a long-term association between felsic volcanic ash abundances and light d18O excursions in both interglacial and glacial stages, which suggests a causal link between deglaciations and explosive Icelandic eruptions. A significant developmental step in the paleoceanographic reconstruction based on benthic evidence was for diminished supply of Denmark Strait Overflow Water (DSOW) beginning at ~380 ka, possibly initiated by the influx of meltwater from broad-scale iceberg discharges along the east Greenland coast. There is also planktic evidence of a two-step cooling of sea surface conditions in the Irminger basin, first at ~338-309 ka and later at ~211-190 ka, after which both glacials and interglacials were colder as the Arctic front migrated southeast of Site 919. In addition to offering these findings, this reconstruction provides a longer-term geologic context for the interpretation of more recent paleoceanographic events and patterns of deposition from this region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oceanic core complexes expose lower crustal and upper mantle rocks on the seafloor by tectonic unroofing in the footwalls of large-slip detachment faults. The common occurrence of these structures in slow and ultra-slow spread oceanic crust suggests that they accommodate a significant component of plate divergence. However, the subsurface geometry of detachment faults in oceanic core complexes remains unclear. Competing models involve either: (a) displacement on planar, low-angle faults with little tectonic rotation; or (b) progressive shallowing by rotation of initially steeply dipping faults as a result of flexural unloading (the "rolling-hinge" model). We address this debate using palaeomagnetic remanences as markers for tectonic rotation within a unique 1.4 km long footwall section of gabbroic rocks recovered by Integrated Ocean Drilling Program (IODP) sampling at Atlantis Massif oceanic core complex on the Mid-Atlantic Ridge (MAR). These rocks contain a complex record of multipolarity magnetizations that are unrelated to alteration and igneous stratigraphy in the sampled section and are inferred to result from progressive cooling of the footwall section over geomagnetic polarity chrons C1r.2r, C1r.1n (Jaramillo) and C1r.1r. For the first time we have independently reoriented drill-core samples of lower crustal gabbros, that were initially azimuthally unconstrained, to a true geographic reference frame by correlating structures in individual core pieces with those identified from oriented imagery of the borehole wall. This allows reorientation of the palaeomagnetic data, placing far more rigorous constraints on the tectonic history than those possible using only palaeomagnetic inclination data. Analysis of the reoriented high temperature reversed component of magnetization indicates a 46° ± 6° anticlockwise rotation of the footwall around a MAR-parallel horizontal axis trending 011° ± 6°. Reoriented lower temperature components of normal and reversed polarity suggest that much of this rotation occurred after the end of the Jaramillo chron (0.99 Ma). The data provide unequivocal confirmation of the key prediction of flexural, rolling-hinge models for oceanic core complexes, whereby oceanic detachment faults initiate at higher dips and rotate to their present day low-angle geometries as displacement increases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The astronomical timescale of the Eastern Mediterranean Plio-Pleistocene builds on tuning of sapropel layers to Northern Hemisphere summer insolation maxima. A 3000-year precession lag has become instrumental in the tuning procedure as radiocarbon dating revealed that the midpoint of the youngest sapropel, S1, in the early Holocene occurred approximately 3000 years after the insolation maximum. The origin of the time lag remains elusive, however, because sapropels are generally linked to maximum African monsoon intensities and transient climate modeling results indicate an in-phase behavior of the African monsoon relative to precession forcing. Here we present new high-resolution records of bulk sediment geochemistry and benthic foraminiferal oxygen isotopes from ODP Site 968 in the Eastern Mediterranean. We show that the 3000-year precession time lag of the sapropel midpoints is consistent with (1) the global marine isotope chronology, (2) maximum (monsoonal) precipitation conditions in the Mediterranean region and China derived from radiometrically dated speleothem records, and (3) maximum atmospheric methane concentrations in Antarctica ice cores. We show that the time lag relates to the occurrence of precession-paced North Atlantic cold events, which systematically delayed the onset of strong boreal summer monsoon intensity. Our findings may also explain a non-stationary behavior of the African monsoon over the past 3 million years due to more frequent and intensive cold events in the Late Pleistocene.