227 resultados para Goiás Magmatic Arc
Geological map of Potter Peninsula (King George Island, South Shetland Islands, Antarctic Peninsula)
Resumo:
We present here a new geological map of Potter Peninsula (King George Island, South Shetland Islands). Like on adjacent Barton Peninsula, the morphology on Potter Peninsula is predominantly characterized by a glacial landscape with abrasion platforms offshore, in parts steep cliffs along the coast, and a rather smooth, hilly countryside in the interior. Potter Peninsula forms part of the downthrown Warszawa Block. The volcanic sequence cropping out here belongs to the King George Island Supergroup, with an observed local minimum thickness of approx. 90 m (Kraus 2005). The most prominent morphological feature is Three Brothers Hill (196 m), a well known andesitic plug showing conspicuous columnar jointing. It marks the final stage of activity of a Paleogene volcano, whose eruption products (lava flows and pyroclastic rocks), together with hypabyssal intrusions related to the volcanism, make up most of the lithology observed on Potter Peninsula (Kraus 2005). The Three Brothers Hill volcanic complex is eroded down to its deepest levels. Thus, the stratigraphically deepest units from the initial phase of volcanic activity are cropping out in some parts (Kraus & del Valle, in Wienke et al. 2008). The lithology on Potter Peninsula comprises lava flows (~50%), pyroclastic rocks (ash-fallout, pyroclastic flow deposits, volcanic breccia and agglomerates, ~30%) and hypabyssal intrusions (dykes, sills and small subvolcanic intrusive bodies, ~20%). 40Ar/39Ar datings carried out on magmatic dykes from Potter Peninsula indicate a short, but intense intrusive event during the Lutetian (Kraus et al. 2007).
Resumo:
Petrographic and geochemical investigations were carried out on 21 ash layers from four sites of ODP Legs 113 and 114 in the southern Atlantic Ocean. With the help of geochemical data and petrographic characterization three rock series can be distinguished for stratigraphically different ash layers from Site 701 (Leg 114) located east of the South Sandwich Island Arc, whereas the Leg 113 tephras from the southern slope of the South Orkney Microcontinent belong to another magmatic series. Geochemical correlation of the Leg 113 tephras with possible source areas indicates that they were probably erupted from the Antarctic Peninsula. The Miocene ashes from Site 701 are probably derived from the now-extinct Discovery Arc, the precursor of the South Sandwich Islands. The Pliocene ashes from the site show some affinity with the South Shetland Islands, although the available data do not permit a clear correlation. The Quaternary ashes from Site 701 display a chemistry typical of island-arc tholeiites and are therefore most probably derived from eruptions on the South Sandwich Islands. Because of their distant position the southern Andes seem to be rather improbable as a potential source region for the tephra layers investigated.
Resumo:
Geological and geophysical investigations carried out within the Hokkaido Rise showed that intrusives composing outcrops of the crystalline basement on the ocean floor form a continuous series from monzonites and diorite-monzonites to granites with prevalence of granodiorites with stable mineralogical association: biotite - hornblende - K-feldspar. Acidic volcanic rocks are characterized by a similar mineralogical association with almost complete absence of plagioclase-pyroxene species. It seems that the Hokkaido Rise, as well as the marginal oceanic Zenkevich swell as a whole are not primary oceanic structural formations and have undergone a complex and long history of geological development with intense orogenic movements that occurred in Middle Cretaceous and preceded subalkaline basalt outpouring during postorogenic subsidence of the Earth crust.
Resumo:
The process of fluid release from the subducting slab beneath the Izu arc volcanic front (Izu VF) was examined by measuring B concentrations and B isotope ratios in the Neogene fallout tephra (ODP Site 782A). Both were measured by secondary ion mass spectrometry, in a subset of matrix glasses and glassy plagioclase-hosted melt inclusions selected from material previously analyzed for major and trace elements (glasses) and radiogenic isotopes (Sr, Nd, Pb; bulk tephra). These tephra glasses have high B abundances (~10-60 ppm) and heavy delta11B values (+4.5? to +12.0?), extending the previously reported range for Izu VF rocks (delta11B, +7.0? to +7.3?). The glasses show striking negative correlations of delta11B with large ion lithophile element (LILE)/Nb ratios. These correlations cannot be explained by mixing two separate slab fluids, originating from the subducting sediment and the subducting basaltic crust, respectively (model A). Two alternative models (models B and C) are proposed. Model B proposes that the inverse correlations are inherited from altered oceanic crust (AOC), which shows a systematic decrease of B and LILE with increasing depth (from basaltic layer 2A to layer 3), paralleled by an increase in delta11B (from ~ +1? to +10? to +24?). In this model, the contribution of sedimentary B is insignificant (<4% of B in the Izu VF rocks). Model C explains the correlation as a mixture of a low-delta11B (~ +1?) 'composite' slab fluid (a mixture of metasediment- and metabasalt-derived fluids) with a metasomatized mantle wedge containing elevated B (~1-2 ppm) and heavy delta11B (~ +14?). The mantle wedge was likely metasomatized by 11B-rich fluids beneath the outer forearc, and subsequently down dragged to arc front depths by the descending slab. Pb-B isotope systematics indicate that, at arc front depths, ~ 53% of the B in the Izu VF is derived from the wedge. This implies that the heavy delta11B values of Izu VF rocks are largely a result of fluid fractionation, and do not reflect variations in slab source provenance (i.e. subducting sediment vs. basaltic crust). Since the B content of the peridotite at the outer forearc (7-58 ppm B, mean 24 +/- 16 ppm) is much higher than beneath the arc front (~1-2 ppm B), the hydrated mantle wedge must have released a B-rich fluid on its downward path. This 'wedge flux' can explain (1) the across-arc decrease in B and delta11B (e.g. Izu, Kuriles), without requiring a progressive decrease in fluid flux from the subducting slab, and (2) the thermal structure of volcanic arcs, as reflected in the B and delta11B variations of volcanic arc rocks.