227 resultados para Chemistry and future


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The response of respiration, photosynthesis, and calcification to elevated pCO2 and temperature was investigated in isolation and in combination in the Mediterranean crustose coralline alga Lithophyllum cabiochae. Algae were maintained in aquaria during 1 year at near-ambient conditions of irradiance, at ambient or elevated temperature (+3 °C), and at ambient (ca. 400 µatm) or elevated pCO2 (ca. 700 µatm). Respiration, photosynthesis, and net calcification showed a strong seasonal pattern following the seasonal variations of temperature and irradiance, with higher rates in summer than in winter. Respiration was unaffected by pCO2 but showed a general trend of increase at elevated temperature at all seasons, except in summer under elevated pCO2. Conversely, photosynthesis was strongly affected by pCO2 with a decline under elevated pCO2 in summer, autumn, and winter. In particular, photosynthetic efficiency was reduced under elevated pCO2. Net calcification showed different responses depending on the season. In summer, net calcification increased with rising temperature under ambient pCO2 but decreased with rising temperature under elevated pCO2. Surprisingly, the highest rates in summer were found under elevated pCO2 and ambient temperature. In autumn, winter, and spring, net calcification exhibited a positive or no response at elevated temperature but was unaffected by pCO2. The rate of calcification of L. cabiochae was thus maintained or even enhanced under increased pCO2. However, there is likely a trade-off with other physiological processes. For example, photosynthesis declines in response to increased pCO2 under ambient irradiance. The present study reports only on the physiological response of healthy specimens to ocean warming and acidification, however, these environmental changes may affect the vulnerability of coralline algae to other stresses such as pathogens and necroses that can cause major dissolution, which would have critical consequence for the sustainability of coralligenous habitats and the budgets of carbon and calcium carbonate in coastal Mediterranean ecosystems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deep-water ecosystems are characterized by relatively low carbonate concentration values and, due to ocean acidification (OA), these habitats might be among the first to be exposed to undersaturated conditions in the forthcoming years. However, until now, very few studies have been conducted to test how cold-water coral (CWC) species react to such changes in the seawater chemistry. The present work aims to investigate the mid-term effect of decreased pH on calcification of the two branching CWC species most widely distributed in the Mediterranean, Lophelia pertusa and Madrepora oculata. No significant effects were observed in the skeletal growth rate, microdensity and porosity of both species after 6 months of exposure. However, while the calcification rate of M. oculata was similar for all colony fragments, a heterogeneous skeletal growth pattern was observed in L. pertusa, the younger nubbins showing higher growth rates than the older ones. A higher energy demand is expected in these young, fast-growing fragments and, therefore, a reduction in calcification might be noticed earlier during long-term exposure to acidified conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A detailed study of the Fe-Ti oxides in four basalt samples-one from each of the four holes drilled into basement on Ocean Drilling Program Leg 115 (Sites 706, 707, 713, and 715) has been performed. Ilmenite is present only in samples from Sites 706 and 715. In the sample from Site 715, Ti-magnetite intergrowths are characteristic of subaerial (?) high-temperature oxy-exsolution; Ti-magnetite in the other three samples has experienced pervasive low-temperature oxidation to Ti-maghemite, as evidenced by the double-humped, irreversible, saturation magnetization vs. temperature (Js/T) curves. The bulk susceptibility of these samples, which are similar in terms of major element chemistry, varies by a factor of ~20 and correlates semiquantitatively with the modal abundance of Fe-Ti spinel, as determined by image analysis with an electron microprobe. The variation in Fe-Ti oxide abundance correlates with average grain size: fine-grained samples contain less Fe-Ti oxide. This prompts the speculation that the crystallization rate may also influence Fe-Ti oxide abundance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study projects land cover probabilities under climate change for corn (maize), soybeans, spring and winter wheat, winter wheat-soybean double cropping, cotton, grassland and forest across 16 central U.S. states at a high spatial resolution, while also taking into account the influence of soil characteristics and topography. The scenarios span three oceanic-atmospheric global circulation models, three Representative Concentration Pathways, and three time periods (2040, 2070, 2100). As climate change intensifies, the suitable area for all six crops display large northward shifts. Total suitable area for spring wheat, followed by corn and soybeans, diminish. Suitable area for winter wheat and for winter wheat-soybean double-cropping expand northward, while cotton suitability migrates to new, more northerly, locations. Suitability for forest intensifies in the south while yielding to crops in the north; grassland intensifies in the western Great Plains as crop suitability diminishes. To maintain current broad geographic patterns of land use, large changes in the thermal response of crops such as corn would be required. A transition from corn-soybean to winter wheat-soybean doubling cropping is an alternative adaptation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of salinity, temperature and prey availability on the marine migration of anadromous fishes was determined by describing the movements, habitat use and feeding behaviours of Arctic char (Salvelinus alpinus). The objectives were to determine whether char are restricted to the upper water column of the inter-/subtidal zones due to warmer temperatures. Twenty-seven char were tracked with acoustic temperature/pressure (depth) transmitters from June to September, 2008/2009, in inner Frobisher Bay, Canada. Most detections were in surface waters (0-3 m). Inter-/subtidal movements and consecutive repetitive dives (maximum 52.8 m) resulted in extreme body temperature shifts (-0.2-18.1 °C). Approximately half of intertidal and subtidal detections were between 9-13 °C and 1-3 °C, respectively. Stomach contents and deep diving suggested feeding in both inter-/subtidal zones. We suggest that char tolerate cold water at depth to capture prey in the subtidal zone, then seek warmer water to enhance feeding/digestion physiology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The process of fluid release from the subducting slab beneath the Izu arc volcanic front (Izu VF) was examined by measuring B concentrations and B isotope ratios in the Neogene fallout tephra (ODP Site 782A). Both were measured by secondary ion mass spectrometry, in a subset of matrix glasses and glassy plagioclase-hosted melt inclusions selected from material previously analyzed for major and trace elements (glasses) and radiogenic isotopes (Sr, Nd, Pb; bulk tephra). These tephra glasses have high B abundances (~10-60 ppm) and heavy delta11B values (+4.5? to +12.0?), extending the previously reported range for Izu VF rocks (delta11B, +7.0? to +7.3?). The glasses show striking negative correlations of delta11B with large ion lithophile element (LILE)/Nb ratios. These correlations cannot be explained by mixing two separate slab fluids, originating from the subducting sediment and the subducting basaltic crust, respectively (model A). Two alternative models (models B and C) are proposed. Model B proposes that the inverse correlations are inherited from altered oceanic crust (AOC), which shows a systematic decrease of B and LILE with increasing depth (from basaltic layer 2A to layer 3), paralleled by an increase in delta11B (from ~ +1? to +10? to +24?). In this model, the contribution of sedimentary B is insignificant (<4% of B in the Izu VF rocks). Model C explains the correlation as a mixture of a low-delta11B (~ +1?) 'composite' slab fluid (a mixture of metasediment- and metabasalt-derived fluids) with a metasomatized mantle wedge containing elevated B (~1-2 ppm) and heavy delta11B (~ +14?). The mantle wedge was likely metasomatized by 11B-rich fluids beneath the outer forearc, and subsequently down dragged to arc front depths by the descending slab. Pb-B isotope systematics indicate that, at arc front depths, ~ 53% of the B in the Izu VF is derived from the wedge. This implies that the heavy delta11B values of Izu VF rocks are largely a result of fluid fractionation, and do not reflect variations in slab source provenance (i.e. subducting sediment vs. basaltic crust). Since the B content of the peridotite at the outer forearc (7-58 ppm B, mean 24 +/- 16 ppm) is much higher than beneath the arc front (~1-2 ppm B), the hydrated mantle wedge must have released a B-rich fluid on its downward path. This 'wedge flux' can explain (1) the across-arc decrease in B and delta11B (e.g. Izu, Kuriles), without requiring a progressive decrease in fluid flux from the subducting slab, and (2) the thermal structure of volcanic arcs, as reflected in the B and delta11B variations of volcanic arc rocks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Changes in calcification of coccolithophores may affect their photosynthetic responses to both, ultraviolet radiation (UVR, 280-400 nm) and temperature. We operated semi-continuous cultures of Emiliania huxleyi (strain CS-369) at reduced (0.1 mM, LCa) and ambient (10 mM, HCa) Ca2+ concentrations and, after 148 generations, we exposed cells to six radiation treatments (>280, >295, >305, >320, >350 and >395 nm by using Schott filters) and two temperatures (20 and 25 °C) to examine photosynthesis and calcification responses. Overall, our study demonstrated that: (1) decreased calcification resulted in a down regulation of photoprotective mechanisms (i.e., as estimated via non-photochemical quenching, NPQ), pigments contents and photosynthetic carbon fixation; (2) calcification (C) and photosynthesis (P) (as well as their ratio) have different responses related to UVR with cells grown under the high Ca2+ concentration being more resistant to UVR than those grown under the low Ca2+ level; (3) elevated temperature increased photosynthesis and calcification of E. huxleyi grown at high Ca2+concentrations whereas decreased both processes in low Ca2+ grown cells. Therefore, a decrease in calcification rates in E. huxleyi is expected to decrease photosynthesis rates, resulting in a negative feedback that further reduces calcification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fluid inclusions in variably altered diabase recovered from Ocean Drilling Program Legs 137 and 140 at Hole 504B, Costa Rica Rift, exhibit fluid salinities up to 3.7 times that of seawater values (11.7 wt% NaCl equivalent) and exhibit uncorrected homogenization temperatures of 125°C to 202°C. The liquid-dominated inclusions commonly are entrapped in zones of secondary plagioclase and may be primary in origin. Fluid salinities are similar to compositions of fluids venting on the seafloor (0.4-7.0 wt% NaCl) and overlap with those measured in metabasalt samples recovered from near the Kane Fracture Zone on the Mid-Atlantic Ridge and from the Troodos ophiolite, Cyprus. The salinity variations may reflect hydration reactions involving formation of secondary mineral assemblages under rock-dominated conditions, which modify the ionic strength of hydrothermal fluids by consuming or liberating water and chloride ion. Rare CO2-CH4-bearing inclusions, subjacent to zones where talc after olivine becomes an important secondary mineral phase (1700 mbsf), may have formed due to local interaction of seawater and olivine at low water to rock ratios. Corrected average fluid inclusion homogenization temperatures exhibit a gradient from 159°C at a depth of 1370 mbsf to 183°C at a depth of 1992 mbsf and are in apparent equilibrium with the present conductive downhole temperatures. These data indicate that fluid inclusions may be used to estimate downhole temperatures if logging data are unavailable. The compositional and thermal evolution of the diabase-hosted fluids may reflect late-stage, off-axis circulation and conductive heating of compositionally modified seawater in the sheeted dike complex at Hole 504B.