225 resultados para CARBON-BLACK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-resolution sedimentary records of major and minor elements (Al, Ba, Ca, Sr, Ti), total organic carbon (TOC), and profiles of pore water constituents (SO42-, CH4, Ca2+, Ba2+, Mg2+, alkalinity) were obtained for two gravity cores (core 755, 501 m water depth and core 214, 1686 m water depth) from the northwestern Black Sea. The records were examined in order to gain insight into the cycling of Ba in anoxic marine sediments characterized by a shallow sulfate-methane transition (SMT) as well as the applicability of barite as a primary productivity proxy in such a setting. The Ba records are strongly overprinted by diagenetic barite (BaSO4) precipitation and remobilization; authigenic Ba enrichments were found at both sites at and slightly above the current SMT. Transport reaction modeling was applied to simulate the migration of the SMT during the changing geochemical conditions after the Holocene seawater intrusion into the Black Sea. Based on this, sediment intervals affected by diagenetic Ba redistribution were identified. Results reveal that the intense overprint of Ba and Baxs (Ba excess above detrital average) strongly limits its correlation to primary productivity. These findings have implications for other modern and ancient anoxic basins, such as sections covering the Oceanic Anoxic Events for which Ba is frequently used as a primary productivity indicator. Our study also demonstrates the limitations concerning the use of Baxs as a tracer for downward migrations of the SMT: due to high sedimentation rates at the investigated sites, diagenetic barite fronts are buried below the SMT within a relatively short period. Thus, 'relict' barite fronts would only be preserved for a few thousands of years, if at all.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The monograph focuses on the analysis of data addressing the problem of H2S contamination and oxic-anoxic interface in the Black Sea. Regularities of the fine structure of vertical distribution of oxygen, hydrogen sulfide, biogenic elements, organic substances, suspended matter, and metals of the iron-manganese group in the area of contact of aerobic and anaerobic waters have been revealed. Also effects of biochemical, physico-chemical and dynamic processes on their vertical distribution have been examined. Sulfate reduction in seawater and bottom sediments has been studied. Quantitative estimates of H2S fluxes at the water - bottom sediment and O2-H2S interfaces have been done. Features of H2S oxidation have been studied, its budget in the Black Sea has been calculated. Multiyear spatial-temporal variability of the oxic-anoxic interface has been investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main terminal processes of organic matter mineralization in anoxic Black Sea sediments underlying the sulfidic water column are sulfate reduction in the upper 2-4 m and methanogenesis below the sulfate zone. The modern marine deposits comprise a ca. 1-m-deep layer of coccolith ooze and underlying sapropel, below which sea water ions penetrate deep down into the limnic Pleistocene deposits from >9000 years BP. Sulfate reduction rates have a subsurface maximum at the SO4[2-]-CH4 transition where H2S reaches maximum concentration. Because of an excess of reactive iron in the deep limnic deposits, most of the methane-derived H2S is drawn downward to a sulfidization front where it reacts with Fe(III) and with Fe2+ diffusing up from below. The H2S-Fe2+ transition is marked by a black band of amorphous iron sulfide above which distinct horizons of greigite and pyrite formation occur. The pore water gradients respond dynamically to environmental changes in the Black Sea with relatively short time constants of ca. 500 yr for SO4[2-] and 10 yr for H2S, whereas the FeS in the black band has taken ca. 3000 yr to accumulate. The dual diffusion interfaces of SO4[2-]-CH4 and H2S-Fe2+ cause the trapping of isotopically heavy iron sulfide with delta34S = +15 to +33 per mil at the sulfidization front. A diffusion model for sulfur isotopes shows that the SO4[2-] diffusing downward into the SO4[2-]-CH4 transition has an isotopic composition of +19 per mil, close to the +23 per mil of H2S diffusing upward. These isotopic compositions are, however, very different from the porewater SO4[2-] (+43 per mil) and H2S (-15 per mil) at the same depth. The model explains how methane-driven sulfate reduction combined with a deep H2S sink leads to isotopically heavy pyrite in a sediment open to diffusion. These results have general implications for the marine sulfur cycle and for the interpretation of sulfur isotopic data in modern sediments and in sedimentary rocks throughout earth's history.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The surface sediments in the Black Sea are underlain by extensive deposits of iron (Fe) oxide-rich lake sediments that were deposited prior to the inflow of marine Mediterranean Sea waters ca. 9000 years ago. The subsequent downward diffusion of marine sulfate into the methane-bearing lake sediments has led to a multitude of diagenetic reactions in the sulfate-methane transition zone (SMTZ), including anaerobic oxidation of methane (AOM) with sulfate. While the sedimentary cycles of sulfur (S), methane and Fe in the SMTZ have been extensively studied, relatively little is known about the diagenetic alterations of the sediment record occurring below the SMTZ. Here we combine detailed geochemical analyses of the sediment and pore water with multicomponent diagenetic modeling to study the diagenetic alterations below the SMTZ at two sites in the western Black Sea. We focus on the dynamics of Fe, S and phosphorus (P) and demonstrate that diagenesis has strongly overprinted the sedimentary burial records of these elements. Our results show that sulfate-mediated AOM substantially enhances the downward diffusive flux of sulfide into the deep limnic deposits. During this downward sulfidization, Fe oxides, Fe carbonates and Fe phosphates (e.g. vivianite) are converted to sulfide phases, leading to an enrichment in solid phase S and the release of phosphate to the pore water. Below the sulfidization front, high concentrations of dissolved ferrous Fe (Fe2+) lead to sequestration of downward diffusing phosphate as authigenic vivianite, resulting in a transient accumulation of total P directly below the sulfidization front. Our model results further demonstrate that downward migrating sulfide becomes partly re-oxidized to sulfate due to reactions with oxidized Fe minerals, fueling a cryptic S cycle and thus stimulating slow rates of sulfate-driven AOM (~ 1-100 pmol/cm**3/d) in the sulfate-depleted limnic deposits. However, this process is unlikely to explain the observed release of dissolved Fe2+ below the SMTZ. Instead, we suggest that besides organoclastic Fe oxide reduction, AOM coupled to the reduction of Fe oxides may also provide a possible mechanism for the high concentrations of Fe2+ in the pore water at depth. Our results reveal that methane plays a key role in the diagenetic alterations of Fe, S and P records in Black Sea sediments. The downward sulfidization into the limnic deposits is enhanced through sulfate-driven AOM with sulfate and AOM with Fe oxides may provide a deep source of dissolved Fe2+ that drives the sequestration of P in vivianite below the sulfidization front.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The oceans at the time of the Cenomanian-Turonian transition were abruptly perturbed by a period of bottom-water anoxia. This led to the brief but widespread deposition of black organic-rich shales, such as the Livello Bonarelli in the Umbria-Marche Basin (Italy). Despite intensive studies, the origin and exact timing of this event are still debated. In this study, we assess leading hypotheses about the inception of oceanic anoxia in the Late Cretaceous greenhouse world, by providing a 6-Myr-long astronomically-tuned timescale across the Cenomanian-Turonian boundary. We procure insights in the relationship between orbital forcing and the Late Cretaceous carbon cycle by deciphering the imprint of astronomical cycles on lithologic, geophysical, and stable isotope records, obtained from the Bottaccione, Contessa and Furlo sections in the Umbria-Marche Basin. The deposition of black shales and cherts, as well as the onset of oceanic anoxia, is related to maxima in the 405-kyr cycle of eccentricity-modulated precession. Correlation to radioisotopic ages from the Western Interior (USA) provides unprecedented age control for the studied Italian successions. The most likely tuned age for the Livello Bonarelli base is 94.17 ± 0.15 Ma (tuning #1); however, a 405-kyr older age cannot be excluded (tuning #2) due to uncertainties in stratigraphic correlation, radioisotopic dating, and orbital configuration. Our cyclostratigraphic framework suggests that the exact timing of major carbon cycle perturbations during the Cretaceous may be linked to increased variability in seasonality (i.e. a 405-kyr eccentricity maximum) after the prolonged avoidance of seasonal extremes (i.e. a 2.4-Myr eccentricity minimum). Volcanism is probably the ultimate driver of oceanic anoxia, but orbital periodicities determine the exact timing of carbon cycle perturbations in the Late Cretaceous. This unites two leading hypotheses about the inception of oceanic anoxia in the Late Cretaceous greenhouse world.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

C2-C8 hydrocarbon concentrations (about 35 compounds identified, including saturated, aromatic, and olefinic compounds) from 27 shipboard-sealed, deep-frozen core samples of DSDP Hole 603B off the east coast of North America were determined by a gas-stripping/thermovaporization method. Total yields representing the hydrocarbons dissolved in the pore water and adsorbed on the mineral surfaces of the sediments vary from 22 to 2400 ng/g of dryweight sediment. Highest yields are measured in the two black shale samples of Core 603B-34 (hydrogen index of 360 and 320 mg/g Corg, respectively). In organic-carbon-normalized units these samples have hydrocarbon contents of 12,700 and 21,500 ng/g Corg, respectively, indicating the immaturity of their kerogens. Unusually high organic-carbonnormalized yields are associated with samples that are extremely lean in organic carbon. It is most likely that they are enriched by small amounts of migrated light hydrocarbons. This applies even to those samples with high organic-carbon contents (1.3-2.2%) of Sections 603B-28-4, 603B-29-1, 603B-49-2, and 603B-49-3, because they have an extremely low hydrocarbon potential (hydrogen index between 40 and 60 mg/g Corg). Nearly all samples were found to be contaminated by varying amounts of acetone that is used routinely in large quantities on board ship during core-cutting procedures. Therefore, 48 samples from the original set of 75 collected had to be excluded from the present study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chloropigments and their derivative pheopigments preserved in sediments can directly be linked to photosynthesis. Their carbon and nitrogen stable isotopic compositions have been shown to be a good recorder of recent and past surface ocean environmental conditions tracing the carbon and nitrogen sources and dominant assimilation processes of the phytoplanktonic community. In this study we report results from combined compound-specific radiocarbon and stable carbon and nitrogen isotope analysis to examine the time-scales of synthesis and fate of chlorophyll-a and its degradation products pheophytin-a, pyropheophytin-a, and 132,173-cyclopheophorbide-a-enol until burial in Black Sea core-top sediments. The pigments are mainly of marine phytoplanktonic origin as implied by their stable isotopic compositions. Pigment ?15N values indicate nitrate as the major uptake substrate but 15N-depletion towards the open marine setting indicates either contribution from N2-fixation or direct uptake of ammonium from deeper waters. Radiocarbon concentrations translate into minimum and maximum pigment ages of approximately 40 to 1200 years. This implies that protective mechanisms against decomposition such as association with minerals, storage in deltaic anoxic environments, or eutrophication-induced hypoxia and light limitation are much more efficient than previously thought. Moreover, seasonal variations of nutrient source, growth period, and habitat and their associated isotopic variability are likely at least as strong as long-term trends. Combined triple isotope analysis of sedimentary chlorophyll and its primary derivatives is a powerful tool to delineate biogeochemical and diagenetic processes in the surface water and sediments, and to assess their precise time-scales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The last glacial-interglacial transition or Termination I (T I) is well documented in the Black Sea, whereas little is known about climate and environmental dynamics during the penultimate Termination (T II). Here we present a multi-proxy study based on a sediment core from the SE Black Sea covering the penultimate glacial and almost the entire Eemian interglacial (133.5 ±0.7-122.5 ±1.7 ka BP). Proxies comprise ice-rafted debris (IRD), O and Sr isotopes as well as Sr/Ca, Mg/Ca, and U/Ca ratios of benthic ostracods, organic and inorganic sediment geochemistry, as well as TEX86 and UK'37derived water temperatures. The ending penultimate glacial (MIS 6, 133.5 to 129.9 ±0.7 ka BP) is characterised by mean annual lake surface temperatures of about 9°C as estimated from the TEX86 palaeothermometer. This period is impacted by two Black Sea melt water pulses (BSWP-II-1 and 2) as indicated by very low Sr/Ca ostracods but high sedimentary K/Al values. Anomalously high radiogenic 87Sr/86Sr ostracod values (max. 0.70945) during BSWP-II-2 suggest a potential Himalayan source communicated via the Caspian Sea. The T II warming started at 129.9 ±0.7 ka BP, witnessed by abrupt disappearance of IRD, increasing d18O ostracod values, and a first TEX86 derived temperature rise of about 2.5°C. A second, abrupt warming step to ca. 15.5°C as the prelude of the Eemian warm period is documented at 128.3 ka BP. The Mediterranean-Black Sea reconnection most likely occurred at 128.1 ±0.7 ka BP as demonstrated by increasing Sr/Ca ostracods and U/Ca ostracods values. The disappearance of ostracods and TOC contents >2% document the onset of Eemian sapropel formation at 127.6 ka BP. During sapropel formation, TEX86 temperatures dropped and stabilised at around 9°C, while UK'37 temperatures remain on average 17°C. This difference is possibly caused by a habitat shift of Thaumarchaeota communities from surface towards nutrient-rich deeper and colder waters located above the gradually establishing halo-and redoxcline.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

C2-C8 hydrocarbons (36 compounds identified) from 56 shipboard sealed, deep-frozen core samples of DSDP Leg 71, Site 511, Falkland Plateau, South Atlantic, were analyzed by a combined hydrogen stripping-thermovaporization method. Concentrations, which represent hydrocarbons dissolved in the pore water and adsorbed to the mineral surfaces of the sediment, vary from 24 ng/g of dry weight sediment in Lithologic Unit 4 to 17,400 ng/g in Lithologic Unit 6 ("black shale" unit). Likewise, the organic carbon normalized C2-C8 hydrocarbon concentrations range from 104 to 3.5 x 105 ng/g Corg. The latter value is more than one order of magnitude lower than expected for petroleum source beds in the main phase of oil generation. The low maturity at 600 meters depth is further supported by light hydrocarbon concentration ratios. The change of the kerogen type from Lithologic Unit 5 (Type III) to 6 (Type II) is evidenced by changes in the C6 and C7 hydrocarbon composition. Redistribution phenomena are observed close to the Tertiary-Cretaceous unconformity and at the contact between the "black shale" unit and the overlying Cretaceous chalks and claystones. Otherwise, the low molecular weight hydrocarbons in Hole 511 are formed in situ and remain at their place of formation. The core samples turned out to be contaminated by large quantities of acetone, which is routinely used as a solvent during sampling procedures onboard Glomar Challenger.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transfer of organic carbon (OC) from the terrestrial to the oceanic carbon pool is largely driven by riverine and aeolian transport. Before transport, however, terrigenous organic matter can be retained in intermediate terrestrial reservoirs such as soils. Using compound-specific radiocarbon analysis of terrigenous biomarkers their average terrestrial residence time can be evaluated. Here we show compound-specific radiocarbon (14C) ages of terrigenous biomarkers and bulk 14C ages accompanied by geochemical proxy data from core top samples collected along transects in front of several river mouths in the Black Sea. 14C ages of long chain n-alkanes, long chain n-fatty acids and total organic carbon (TOC) are highest in front of the river mouths, correlating well with BIT (branched and isoprenoid tetraether) indices, which indicates contribution of pre-aged, soil-derived terrigenous organic matter. The radiocarbon ages decrease further offshore towards locations where organic matter is dominated by marine production and aeolian input potentially contributes terrigenous organic matter. Average terrestrial residence times of vascular plant biomarkers deduced from n-C29+31 alkanes and n-C28+30 fatty acids ages from stations directly in front of the river mouths range from 900 ± 70 years to 4400 ± 170 years. These average residence times correlate with size and topography in climatically similar catchments, whereas the climatic regime appears to control continental carbon turnover times in morphologically similar drainage areas of the Black Sea catchment. Along-transect data imply petrogenic contribution of n-C29+31 alkanes and input via different terrigenous biomarker transport modes, i.e., riverine and aeolian, resulting in aged biomarkers at offshore core locations. Because n-C29+31 alkanes show contributions from petrogenic sources, n-C28+30 fatty acids likely provide better estimates of average terrestrial residence times of vascular plant biomarkers. Moreover, sedimentary n-C28 and n-C30 fatty acids appear clearly much less influenced by autochthonous sources than n-C24 and n-C26 fatty acids as indicated by increasing radiocarbon ages with increasing chain-length and are, thus, more representative as vascular plant biomarkers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sediment and interstitial water samples recovered during DSDP Leg 93 at Site 603 (lower continental rise off Cape Hatteras) were analyzed for a series of geochemical facies indicators to elucidate the nature and origin of the sedimentary material. Special emphasis was given to middle Cretaceous organic-matter-rich turbidite sequences of Aptian to Turanian age. Organic carbon content ranges from nil in pelagic claystone samples to 4.2% (total rock) in middle Cretaceous carbonaceous mudstones of turbiditic origin. The organic matter is of marine algal origin with significant contributions of terrigenous matter via turbidites. Maturation indices (vitrinite reflectance) reveal that the terrestrial humic material is reworked. Maturity of autochthonous material (i.e., primary vitrinite) falls in the range of 0.3 to 0.6% Carbohydrate, hydrocarbon, and microscopic investigations reveal moderate to high microbial degradation. Unlike deep-basin black shales of the South and North Atlantic, organic-carbon-rich members of the Hatteras Formation lack trace metal enrichment. Dissolved organic carbon (DOC) in interstitial water samples ranges from 34.4 ppm in a sandstone sample to 126.2 ppm in an organic-matter-rich carbonaceous claystone sample. One to two percent of DOC is carbohydratecarbon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Uncertainty currently exists about the removal of carbon (C) and phosphorus (P) from the oceanic reservoir, especially in low oxygen settings. In this paper, the cycling of C and P is examined in sediments from the anoxic Saanich Inlet, cored by Ocean Drilling Program (ODP) Leg 169S in 1996 at two sites. Although Corg/Porg ratios are high and increase with depth in the Saanich Inlet, this effect is due largely to a remobilization of P from an organic matter sink to an authigenic sink. Reducible sedimentary components act as temporary shuttles in this process even in this anoxic setting, with the ultimate burial sink for the remobilized P being carbonate fluorapatite. The effective Corg/Preactive molar ratio appears to be about 150-200, indicating some preferential loss of P compared to C during organic matter degradation, but not approaching previously reported values of over 3000 in black shales. Reactive P accumulation rates in this basin range from 10,000-60,000 µmol/cm**2/kyr, greatly exceeding the range of 500-8000 µmol/cm**2/kyr found in most continental-margin settings, including regions of modern phosphogenesis. The initiation of marine sedimentation in the Saanich Inlet occurred after deglaciation, and the high rates of P burial seen here may provide an end-member example of the effects of sea level and margin sedimentation on the distribution of P within the marine P cycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean anoxic events were periods of high carbon burial that led to drawdown of atmospheric carbon dioxide, lowering of bottom-water oxygen concentrations and, in many cases, significant biological extinction (Arthur et al., 1990; Erbacher et al., 1996, doi:10.1130/0091-7613(1996)024<0499:EPORAO>2.3.CO;2; Kuypers et al., 1999, doi:10.1038/20659; Jenkyns, 1997; Hochuli et al., 1999, doi:10.1130/0091-7613(1999)027<0657:EOHPAC>2.3.CO;2). Most ocean anoxic events are thought to be caused by high productivity and export of carbon from surface waters which is then preserved in organic-rich sediments, known as black shales. But the factors that triggered some of these events remain uncertain. Here we present stable isotope data from a mid-Cretaceous ocean anoxic event that occurred 112 Myr ago, and that point to increased thermohaline stratification as the probable cause. Ocean anoxic event 1b is associated with an increase in surface-water temperatures and runoff that led to decreased bottom-water formation and elevated carbon burial in the restricted basins of the western Tethys and North Atlantic. This event is in many ways similar to that which led to the more recent Plio-Pleistocene Mediterranean sapropels, but the greater geographical extent and longer duration (~46 kyr) of ocean anoxic event 1b suggest that processes leading to such ocean anoxic events in the North Atlantic and western Tethys were able to act over a much larger region, and sequester far more carbon, than any of the Quaternary sapropels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Late Jurassic to Early Cretaceous (Volgian-Ryazanian) was a period of a second-order sea-level low stand, and it provided excellent conditions for the formation of shallow marine black shales in the Norwegian-Greenland Seaway (NGS). IKU Petroleum Research drilling cores taken offshore along the Norwegian shelf were investigated with geochemical and microscopic approaches to (1) determine the composition of the organic matter, (2) characterize the depositional environments, and (3) discuss the mechanisms which may have controlled production, accumulation, and preservation of the organic matter. The black shale sequences show a wide range of organic carbon contents (0.5-7.0 wt %) and consist of thermally immature organic matter of type II to II/III kerogen. Rock-Eval pyrolysis revealed fair to very good petroleum source rock potential, suggesting a deposition in restricted shallow marine basins. Well-developed lamination and the formation of autochthonous pyrite framboids further indicate suboxic to anoxic bottom water conditions. In combination with very low sedimentation rates it seems likely that preservation was the principal control on organic matter accumulation. However, a decrease of organic carbon preservation and an increase of refractory organic matter from the Volgian to the Hauterivian are superimposed on short-term variations (probably reflecting Milankovitch cycles). Various parameters indicate that black shale formation in the NGS was gradually terminated by increased oxidative conditions in the course of a sea-level rise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Parameters of provision of the phytoplankton community with inorganic nitrogen compounds in the western Black Sea in April 1993 are analyzed (specifically, dependence of rates of uptake of nitrates and ammonium by microplankton on substrate concentration, diurnal dynamics of assimilation of mineral nitrogen, values of f-ratios, and proportions of carbon and nitrogen fluxes). In most cases all the parameters of degree of phytoplankton provision with mineral nitrogen are shown to vary unidirectionally, both at the surface and in the photosynthesis zone. Individual areas of a relatively small region studied differed markedly in their level of provision of algae with inorganic nitrogen compounds - from complete saturation to high degree of limitation of phytoplankton development due to nitrogen deficiency in the environment. Obtained results allow to estimate provision of Black Sea phytoplankton with nitrogen in terms of limitation of rates of uptake of its inorganic compounds.