364 resultados para Beckman pH meter
Resumo:
Ocean acidification is an ongoing threat for marine organisms due to the increasing atmospheric CO2 concentration. Seawater acidification has a serious impact on physiologic processes in marine organisms at all life stages. On the other hand, potential tolerance to external pH changes has been reported in coral larvae. Information about the possible mechanisms underlying such tolerance responses, however, is scarce. In the present study, we examined the effects of acidified seawater on the larvae of Acropora digitifera at the molecular level. We targeted two heat shock proteins, Hsp70 and Hsp90, and a heat shock transcription factor, Hsf1, because of their importance in stress responses and in early life developmental stages. Coral larvae were maintained under the ambient and elevated CO2 conditions that are expected to occur within next 100 years, and then we evaluated the expression of hsps and hsf1 by quantitative real-time polymerase chain reaction (PCR). Expression levels of these molecules significantly differed among target genes, but they did not change significantly between CO2conditions. These findings indicate that the expression of hsps is not changed due to external pH changes, and suggest that tolerance to acidified seawater in coral larvae may not be related to hsp expression.
Resumo:
Increasing atmospheric CO2 concentration affects calcification in most planktonic calcifiers. Both reduced or stimulated calcification under high CO2 have been reported in the widespread coccolithophore Emiliania huxleyi. This might affect the response of cells to photosynthetically active radiation (PAR; 400-700 nm) and ultraviolet radiation (UVR; 280-400 nm) by altering the thickness of the coccolith layer. Here we show that in the absence of UVR, the calcification rates in E. huxleyi decrease under lowered pH levels (pHNBS of 7.9 and 7.6; pCO2 of 81 and 178 Pa or 804 and 1759 ppmv, respectively) leading to thinned coccolith layers, whereas photosynthetic carbon fixation was slightly enhanced at pH 7.9 but remained unaffected at pH 7.6. Exposure to UVR (UV-A 19.5 W m**-2, UV-B 0.67 W m**-2) in addition to PAR (88.5 W m**-2), however, results in significant inhibition of both photosynthesis and calcification, and these rates are further inhibited with increasing acidification. The combined effects of UVR and seawater acidification resulted in the inhibition of calcification rates by 96% and 99% and that of photosynthesis by 6% and 15%, at pH 7.9 and 7.6, respectively. This differential inhibition of calcification and photosynthesis leads to significant reduction of the ratio of calcification to photosynthesis. Seawater acidification enhanced the transmission of harmful UVR by about 26% through a reduction of the coccolith layer of 31%. Our data indicate that the effect of a high-CO2 and low-pH ocean on E. huxleyi (because of reduced calcification associated with changes in the carbonate system) enhances the detrimental effects of UVR on the main pelagic calcifier.