250 resultados para Alopecurus alpinus
Resumo:
Pollen analyses and 14C-datings were carried out on two late glacial profiles from Ruegen Island, Mecklenburg-Vorpommern at the southwestern Baltic coast. The palaeoclimatic and palaeoecologic interpretations were supported by carpological investigations. The organogenic deposits of the 'Hoelle' outcrop near Dwasieden Park were chosen because of their unique stratigraphic position, which according to PANZIG (1989), lay under a m3m-Glacial Till of the Mecklenburg Advance (W3). The results indicated that the initial phase of the late glacial sedimentation in a relatively small and asymmetrical lake basin (in comparison with the larger Nieder- and Credner lake to the southwest), probably had its origin in the older Alleroed (II a) after FIRBAS (1949). The basal clastic sediments were rapidly followed by peat deposits and later, due to a rising water table, by muds rich in organic matter. The area was covered with sparse Betula-(Pinus) forests having heliophilous late-glacial elements typical of the surrounding areas during the younger Alleroed (II b). With the climatic change to colder and drier conditions at the beginning of the Younger Dryas (III), the vegetation decreased and enhanced erosional processes led to the fill up of the depression with fine clastic sediments. The intense relief differences of the surroundings coupled with high water saturation in the sediments led to solifluction in the m3m-Glacial Till and its placement discordantly over the organogenic sequence.
Resumo:
Reliable information of past vegetation changes are important to project future changes, especially for areas undergoing rapid transitioning such as the boreal treeline. The application of detailed sedDNA records has the potential to enhance our understanding of vegetation changes gained mainly from pollen studies of lake sediments. This study investigates sedDNA and pollen records from 31 lakes along a gradient of increasing larch forest cover in northern Siberia (Taymyr Peninsula) and compares them with vegetation field surveys within the lake's catchment. With respect to vegetation richness, sedDNA recorded 114 taxa, about half of them to species level, while pollen analyses identified 43 pollen taxa. Both approaches exceed the 31 taxa revealed by vegetation field surveys of 400 m**2 plots. From north to south, Larix percentages increase, as is consistently recorded by all three methods. Furthermore, tundra sites are separated from forested sites in the plots of the principal component analyses. Comparison of ordination results by Procrustes and Protest analyses yields a significant fit among all compared pairs of records. Despite the overall comparability of sedDNA and pollen analyses certain idiosyncrasies in the compositional signal are observed, such as high percentages of Alnus and Betula in all pollen spectra and high percentages of Salix in all sedDNA spectra. In conclusion, our results from the treeline show that sedDNA analyses perform better than pollen in recording site-specific richness (i.e. presence/absence of certain vegetation taxa in the direct vicinity of the lake) and perform as good as pollen in tracing regional vegetation composition.
Resumo:
The effects of eutrophication on short term changes in the microbial community were investigated using high resolution lipid biomarker and trace metal data for sediments from the eutrophic Lake Rotsee (Switzerland). The lake has been strongly influenced by sewage input since the 1850s and is an ideal site for studying an anthropogenically altered ecosystem. Historical remediation measures have had direct implications for productivity and microbial biota, leading to community composition changes and abundance shifts. The higher sewage and nutrient input resulted in a productivity increase, which led predominantly to a radiation in diatoms, primary producers and methanogens between about 1918 and 1921, but also affected all microorganism groups and macrophytes between about 1958 and 1972. Bacterial biomass increased in 1933, which may have been related to the construction of a mechanical sewage treatment plant. Biomarkers also allowed tracing of fossil organic matter/biodegraded oil contamination in the lake. Stephanodiscus parvus, Cyclotella radiosa and Asterionella formosa were the dominant sources of specific diatom biomarkers. Since the 1850s, the cell density of methanogenic Archaea (Methanosaeta spp.) ranged within ca. 0.5-1.8 x 10**9 cells/g dry sediment and the average lipid content of Rotsee Archaea was ca. 2.2 fg iGDGTs/cell. An altered BIT index (BITCH), indicating changes in terrestrial organic matter supply to the lake, is proposed.
Resumo:
Within the scope of Russian-German palaeoenvironmental research, Two-Yurts Lake (TYL, Dvuh-Yurtochnoe in Russian) was chosen as the main scientific target area to decipher Holocene climate variability on Kamchatka. The 5x2 km large and 26 m deep lake is of proglacial origin and situated on the eastern flank of Sredinny Ridge at the northwestern end of the Central Kamchatka Valley, outside the direct influence of active volcanism. Here, we present results of a multi-proxy study on sediment cores, spanning about the last 7000 years. The general tenor of the TYL record is an increase in continentality and winter snow cover in conjunction with a decrease in temperature, humidity, and biological productivity after 5000-4500 cal yrs BP, inferred from pollen and diatom data and the isotopic composition of organic carbon. The TYL proxy data also show that the late Holocene was punctuated by two colder spells, roughly between 4500 and 3500 cal yrs BP and between 1000 and 200 cal yrs BP, as local expressions of the Neoglacial and Little Ice Age, respectively. These environmental changes can be regarded as direct and indirect responses to climate change, as also demonstrated by other records in the regional terrestrial and marine realm. Long-term climate deterioration was driven by decreasing insolation, while the short-term climate excursions are best explained by local climatic processes. The latter affect the configuration of atmospheric pressure systems that control the sources as well as the temperature and moisture of air masses reaching Kamchatka.