320 resultados para Alkenone, C37 total (C37:2 C37:3)
Resumo:
This study analyzes coccolithophore abundance fluctuations (e.g., Emiliania huxleyi, Gephyrocapsa specimens, and Florisphaera profunda) in core MD01-2444 sediment strata retrieved at the Iberian Margin, northeastern Atlantic Ocean. Coccolithophores are calcareous nannofossils, a major component of the oceanic phytoplankton, which provide information about past ecological and climatological variability. Results are supported by data on fossil organic compounds (sea surface temperatures, alkenones, and n-hexacosan-1-ol index) and geochemical analyses (benthic d13Ccc and planktonic d18Occ isotopes). Three scenarios are taken into account for this location at centennial-scale resolution over the last 70,000 years: the Holocene and the stadial and interstadial modes. The different alternatives are described by means of elements such as nutrients; upwelling phenomena; temperatures at surface and subsurface level; or the arrival of surface turbid, fresh, and cold waters due to icebergs, low sea level, increased aridity, and dust. During the Holocene, moderate primary productivity was observed (mainly concentrated in E. huxleyi specimens); surface temperatures were at maxima while the water column was highly ventilated by northern-sourced polar deep waters and warmer subsurface, nutrient-poor subtropical waters. Over most of the last glacial stadials, surface productivity weakened (higher F. profunda and reworked specimen percentages and lower diunsaturated and triunsaturated C37 alkenones); the arrival of cold Arctic surface waters traced by tetraunsaturated C37 peaks and large E. huxleyi, together with powerful ventilated southern-sourced polar deep waters, disturbed, in all likelihood, the delicate vertical equilibrium while preventing significant upwelling mixing. Finally, during the last glacial interstadials (lower F. profunda percentages, nonreworked material, and higher diunsaturated and triunsaturated C37 alkenones) a combined signal is observed: warm surface temperatures were concurrent with generally low oxygenation of the deep-sea floor, moderate arrival of northern-sourced deep waters, and subsurface cold, nutrient-rich, recently upwelled waters, probably of polar origin; these particular conditions may have promoted vertical mixing while enhancing surface primary productivity (mainly of Gephyrocapsa specimens).
Resumo:
Carbon isotopically based estimates of CO2 levels have been generated from a record of the photosynthetic fractionation of 13C (epsilon p) in a central equatorial Pacific sediment core that spans the last ~255 ka. Contents of 13C in phytoplanktonic biomass were determined by analysis of C37 alkadienones. These compounds are exclusive products of Prymnesiophyte algae which at present grow most abundantly at depths of 70-90 m in the central equatorial Pacific. A record of the isotopic compostion of dissolved CO2 was constructed from isotopic analyses of the planktonic foraminifera Neogloboquadrina dutertrei, which calcifies at 70-90 m in the same region. Values of epsilon p, derived by comparison of the organic and inorganic delta values, were transformed to yield concentrations of dissolved CO2 (c e) based on a new, site-specific calibration of the relationship between epsilon p and c e. The calibration was based on reassessment of existing epsilon p versus c e data, which support a physiologically based model in which epsilon p is inversely related to c e. Values of PCO2, the partial pressure of CO2 that would be in equilibrium with the estimated concentrations of dissolved CO2, were calculated using Henry's law and the temperature determined from the alkenone-unsaturation index UK 37. Uncertainties in these values arise mainly from uncertainties about the appropriateness (particularly over time) of the site-specific relationship between epsilon p and 1/c e. These are discussed in detail and it is concluded that the observed record of epsilon p most probably reflects significant variations in Delta pCO2, the ocean-atmosphere disequilibrium, which appears to have ranged from ~110 µatm during glacial intervals (ocean > atmosphere) to ~60 µatm during interglacials. Fluxes of CO2 to the atmosphere would thus have been significantly larger during glacial intervals. If this were characteristic of large areas of the equatorial Pacific, then greater glacial sinks for the equatorially evaded CO2 must have existed elsewhere. Statistical analysis of air-sea pCO2 differences and other parameters revealed significant (p < 0.01) inverse correlations of Delta pCO2 with sea surface temperature and with the mass accumulation rate of opal. The former suggests response to the strength of upwelling, the latter may indicate either drawdown of CO2 by siliceous phytoplankton or variation of [CO2]/[Si(OH)4] ratios in upwelling waters.
Resumo:
Oxidized intervals of five organic-rich Madeira Abyssal Plain (MAP) turbidites deposited during the Miocene, Pliocene, and Pleistocene all displayed comparable major loss of total organic carbon (TOC) (84 ± 3.1%) accompanied by a negative isotopic (d13C) shift ranging from -0.3 to -2.9 per mil. Major but significantly lower loss of total nitrogen (Ntot, 61 ± 7.1%) also occurred, leading to a decrease in TOC relative to Ntot (C/Ntot) and a +1.3 to 2.7 per mil Ntot isotopic (d15N) shift. Compound specific isotopic measurements on plant wax n-alkanes indicate the terrestrial organic component in the unoxidized deposits is 13C-enriched owing to significant C4 contribution. Selective preservation of terrestrial relative to marine organic carbon could account for the d13C behavior of TOC upon oxidation but only if a 13C-depleted component of the bulk terrestrial signal is selectively preserved in the process. Although the C/Ntot decrease and positive d15N shift seems inconsistent with selective terrestrial organic preservation, results from analysis of a Modern eolian dust sample collected in the vicinity indicate these observations are compatible. Regardless of the specific explanation for these isotopic observations, however, our findings provide evidence that paleoreconstruction of properties such as pCO2 using the d13C of TOC is a goal fraught with uncertainty whether or not the marine sedimentary record considered is 'contaminated' with significant terrestrial input. Nonetheless, despite major and selective loss of both marine and terrestrial components as a consequence of postdepositional oxidation, intensive organic geochemical proxies such as the alkenone unsaturation index, UK'37, appear resistant to change and thereby retain their paleoceanographic promise.
Resumo:
Sannai-Maruyama is one of the most famous and best-researched mid-Holocene (mid-Jomon) archaeological sites in Japan, because of a large community of people for a long period. Archaeological studies have shown that the Jomon people inhabited the Sannai-Maruyama site from 5.9-4.2 +/- 0.1 cal. kyr B.P. However, a continuous record of the terrestrial and marine environments around the site has not been available. Core KT05-7 PC-02, was recovered from Mutsu Bay, only 20 km from the site, for the reconstruction of high-resolution time series of environmental records, including sea surface temperature (SST). C37 alkenone SSTs showed clear fluctuations, with four periods of high (8.4-7.9, 7.0-5.9, 5.1-4.1, and 2.3-1.4 cal. kyr B.P.) and four of low (-8.4, 7.9-7.0, 5.9-5.1, and 4.1-2.3 cal. kyr B.P.) SST. Thus, each SST cycle lasted 1.0-2.0 kyr, and the amplitude of fluctuation was about 1.5-2.0 °C. Total organic carbon (TOC) and C37 alkenone contents, and the TOC/total nitrogen ratio indicate that marine biogenic production was low before 7.0 cal. kyr B.P., but was clearly increased between 5.9 and 4.0 cal. kyr B.P., because of stronger vertical mixing. During the period when the community at the site prospered (between 5.9 and 4.2 +/- 0.1 cal. kyr B.P.), the terrestrial climate was relatively warm. The high relative abundance of pollen of both Castanea and Quercus subgen. Cyclobalanopsis supports the interpretation that the local climate was optimal for human habitation. Between 5.9 and 5.1 cal. kyr B.P., in spite of warm terrestrial climates, the C37 alkenone SST was low; this apparent discrepancy may be attributed to the water column structure in the Tsugaru Strait, which differed from the modern condition. The evidence suggests that at about 5.9 cal. kyr B.P, high productivity of marine resources such as fish and shellfish and a warm terrestrial climate led to the establishment of a human community at the Sannai-Maruyama site. Then, at about 4.1 +/- 0.1 cal. kyr B.P., abrupt marine and terrestrial cooling, indicated by a decrease of about 2 °C in the C37 alkenone SST and an increase in pollen of taxa of cooler climates, led to a reduced terrestrial food supply, causing the people to abandon the site. The timing of the abandonment is consistent with the timing (around 4.0-4.3 cal. kyr B.P.) of the decline of civilizations in north Mesopotamia and along the Yangtze River. These findings suggest that a temperature rise of ~2 °C in this century as a result of global warming could have a great impact on the human community and especially on agriculture, despite the advances of contemporary society.
Resumo:
Surface sediments from the eastern South Atlantic were investigated for their lipid biomarker contents and bulk organic geochemical characteristics to identify sources, transport pathways and preservation processes of organic components. The sediments cover a wide range of depositional settings with large differences in mass accumulation rates. The highest marine organic carbon (OC) contributions are detected along the coast, especially underlying the Benguela upwelling system. Terrigenous OC contributions are highest in the Congo deep-sea fan. Lipid biomarker fluxes are significantly correlated to the extent of oxygen exposure in the sediment. Normalization to total organic carbon (TOC) contents enabled the characterization of regional lipid biomarker production and transport mechanisms. Principal component analyses revealed five distinct groups of characteristic molecular and bulk organic geochemical parameters. Combined with information on lipid sources, the main controlling mechanisms of the spatial lipid distributions in the surface sediments are defined, indicating marine productivity related to river-induced mixing and oceanic upwelling, wind-driven deep upwelling, river-supply of terrigenous organic material, shallow coastal upwelling and eolian supply of plant-waxes.
Resumo:
High resolution reconstructions of sea surface temperature (Uk'37-SST), coccolithophore associations and continental input (total organic carbon, higher plant n-alkanes, n-alkan-1-ols) in core D13882 from the shallow Tagus mud patch are compared to SST records from deep-sea core MD03-2699 and other western Iberian Margin cores. Results reveal millennial-scale climate variability over the last deglaciation, in particular during the LGIT. In the Iberian margin, Heinrich event 1 (H1) and the Younger Dryas (YD) represent two extreme episodes of cold sea surface condition separated by a marine warm phase that coincides with the Bølling-Allerød interval (B-A) on the neighboring continent. Following the YD event, an abrupt sea surface warming marks the beginning of the Holocene in this region. SSTs recorded in core D13882 changed, however, faster than those at deep-sea site MD03-2699 and at the other available palaeoclimate sequences from the region. While the SST values from most deep-sea cores reflect the latitudinal gradient detected in the Iberian Peninsula atmospheric temperature proxies during H1 and the B-A, the Tagus mud patch (core D13882) experienced colder SSTs during both events. This is most certainly related to a supplementary input of cold freshwater from the continent to the Tagus mud patch, a hypothesis supported by the high contents of terrigenous biomarkers and total organic carbon as well as by the dominance of tetra-unsaturated alkenone (C37:4) observed at this site. The comparison of all western Iberia SST records suggests that the SST increase that characterizes the B-A event in this region started 1000 yr before meltwater pulse 1A (mwp-1A) and reached its maximum values during or slightly after this episode of substantial sea-level rise. In contrast, during the YD/ Holocene transition, the sharp SST rise in the Tagus mud patch is synchronous with meltwater pulse IB. The decrease of continental input to the mud patch conflrms a sea level rise in the region. Thus, the synchronism between the maximum warming in the mid-latitudes off the western Iberian margin, the adjacent landmasses and Greenland indicates that mwp-lB and the associated sea-level rise probably initiated in the Northern Hemisphere rather than in the South.
Resumo:
ODP Leg 198 drilling on Shatsky Rise recovered a lower Aptian porcellanite (~120.5 Ma) deposited during oceanic anoxic event (OAE) 1a that contains C36-C39 alkadienones: C37:2 and C39:2 alkadien-2-ones and C36:2 and C38:2 alkadien-3-ones. This alkenone distribution differs from that typical of contemporary sediments and haptophyte algae, but resembles that of Cretaceous sediments from the Blake-Bahama basin. The discovery of alkenones in the early Aptian extends their sedimentary record by 15 M.y. to 120.5 M.y. and demonstrates the potential for long-term survival of these diagnostic functional lipids under favorable depositional conditions and subsequent shallow burial. It also contributes to the understanding and reconstruction of evolutionary developments in alkenone distributions and biosynthesis over geologic time.
Resumo:
Six samples from Sites 1219 and 1221 ranging in age from early Eocene to early Oligocene were analyzed for freely extractable lipids to determine whether the low organic carbon (Corg) sediments of the Eocene equatorial Pacific (Corg content typically 0.03%) are appropriate for biomarker studies. Only one sample from the Oligocene equatorial Pacific (Sample 199-1219A-13H-3, 50-54 cm) contained any biomarkers of interest to paleoceanography. The only lipids identified in the remaining samples appear to be contaminants from drilling or subsequent handling. Sample 199-1219A-13H-3, 50-54 cm, contained alkenone biomarkers specific to haptophyte algae that are used for estimating past mean annual sea-surface temperature (maSST). If the Holocene calibration of maSST is appropriate for the Oligocene, the estimated equatorial temperature is >=28.3°C, or at least 3°C warmer than modern equatorial maSST at a similar longitude.
Resumo:
Various types of abrupt/millennial-scale climate variability such as Dansgaard/Oeschger and Heinrich Events characterized the last glacial period. Over the last decade, a number of studies demonstrated that such millennial-scale climate variability was not limited to the last glacial but inherent to Quaternary climate. Here we review the occurrence and origin of millennial ice-rafting events in the North Atlantic during the late Pliocene and Pleistocene (last 3.4 Ma) with a special focus on North Atlantic Hudson Strait (HS) Heinrich(-like) Events. Besides a clear biomarker signature, we show that Heinrich Layers 5, 4, 2, and 1 in marine sediment cores from across the North Atlantic all bear the organic geochemical fingerprint of the Hudson area. Using this framework and combining previously published results, detailed investigations into the organic and inorganic chemistry of ice-rafted debris (IRD) found across the North Atlantic demonstrate that prior to MIS 16 (~ 650 ka) IRD in the North Atlantic did not originate from the Hudson area of northern Canada. The signature of this early IRD is distinctly different compared to that of HS Heinrich Layers. Rather ice-rafting events during the late Pliocene and early Pleistocene predominantly emanated from the calving of the Greenland and Fennoscandian ice sheets and possibly minor contributions from local ice streams from the North American and British ice sheets. Compared to North Atlantic HS Heinrich Events, these early Pleistocene IRD-events had a limited impact on surface water characteristics in the North Atlantic. North Atlantic HS Heinrich(-like) Events first occurred during MIS 16. At the same time, the dominant frequency in silicate-rich IRD accumulation shifted from the obliquity (41-ka) to a 100-ka frequency across the North Atlantic. Iceberg survivability or a change in iceberg trajectory likely did not control this change in IRD-regime. These results lend further support for the existing hypothesis that an increase in size (thickness) of the Laurentide ice sheet controls the occurrence of North Atlantic HS Heinrich Events, favoring an internal dynamic mechanism for their occurrence.
Resumo:
The Mediterranean Sea is at the transition between temperate and tropical air masses and as such of importance for studying climate change. The Gulf of Taranto and adjacent SW Adriatic Sea are at the heart of this region. Their sediments are excellently suited for generating high quality environmental records for the last millennia with a sub-decadal resolution. The quality of these records is dependent on a careful calibration of the transfer functions used to translate the sedimentary lipid signals to the local environment. Here, we examine and calibrate the UK'37 and TEX86 lipid-based temperature proxies in 48 surface sediments and relate these to ambient sea surface temperatures and other environmental data. The UK'37-based temperatures in surface sediments reflect winter/spring sea surface temperatures in agreement with other studies demonstrating maximum haptophyte production during the colder season. The TEX86-based temperatures for the nearshore sites also reflect winter sea surface temperatures. However, at the most offshore sites, they correspond to summer sea surface temperatures. Additional lipid and environmental data including the distribution of the BIT index and remote-sensed chlorophyll-a suggest a shoreward increase of the impact of seasonal and spatial variability in nutrients and control of planktonic archaeal abundance by primary productivity, particle loading in surface waters and/or overprint by a cold-biased terrestrial TEX86 signal. As such the offshore TEX86 values seem to reflect a true summer signal to the effect that offshore UK'37 and TEX86 reconstruct winter and summer temperature, respectively, and hence provide information on the annual temperature amplitude.
Resumo:
Sea Surface Temperature (SST), river discharge and biological productivity have been reconstructed from a multi-proxy study of a high-temporal-resolution sedimentary sequence recovered from the Tagus deposition center off Lisbon (Portugal) for the last 2000 years. SST shows 2 °C variability on a century scale that allows the identification of the Medieval Warm Period (MWP) and the Little Ice Age (LIA). High Iron (Fe) and fine-sediment deposition accompanied by high n-alkane concentrations and presence of freshwater diatoms during the LIA (1300-1900 AD) (Science 292 (2001) 662) suggest augmented river discharge, whereas higher total-alkenone concentrations point to increased river-induced productivity. During the MWP (550-1300 AD) (Science 292 (2001) 662) larger mean-grain size and low values of magnetic susceptibility, and concentrations of Fe, n-alkanes, and n-alcohols are interpreted to reflect decreased runoff. At the same time, increased benthic and planktonic foraminifera abundances and presence of upwelling related diatoms point to increased oceanic productivity. On the basis of the excellent match found between the negative phases of the North Atlantic Oscillation (NAO) index and the intensified Tagus River discharge observed for the last century, it is hypothesized that the increased influx of terrigenous material during the LIA reflects a negative NAO-like state or the occurrence of frequent extreme NAO minima. During the milder few centuries of the MWP, stronger coastal upwelling conditions are attributed to a persistent, positive NAO-like state or the frequent occurrence of extreme NAO maxima. The peak in magnetic susceptibility, centered at 90 cm composite core depth (ccd), is interpreted as the result of the well-known 1755 AD Lisbon earthquake. The Lisbon earthquake and accompanying tsunami are estimated to have caused the loss of 39 cm of sediment (355 years of record-most of the LIA) and the instantaneous deposition of a 19-cm sediment bed.