212 resultados para 143-866A


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To understand the climate dynamics of hypothesized past greenhouse intervals, it is essential to constrain tropical sea-surface temperatures (SST), yet existing proxy records give conflicting results. Here we present the first Mg/Ca-based study of pre-Quaternary SST and investigate early Paleogene (late Paleocene through late middle Eocene; 58.6-39.8 Ma) tropical temperatures, using planktonic foraminifera belonging to the genus Morozovella from Ocean Drilling Program Site 865 on Allison Guyot (western central equatorial Pacific Ocean). Calcification temperatures similar to or warmer than modern tropical SST are calculated using a range of assumptions regarding diagenesis, temperature calibration, and seawater Mg/Ca. Long-term warming is observed into the early Eocene (54.8-49.0 Ma), with peak SST between 51 and 48 Ma and rapid cooling of 4°C beginning at 48 Ma. These findings are inconsistent with the d18O-based SST previously estimated for this site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report d18O and minor element (Mg/Ca, Sr/Ca) data acquired by high-resolution, in situ secondary ion mass spectrometry (SIMS) from planktic foraminiferal shells and 100-500 µm sized diagenetic crystallites recovered from a deep-sea record (ODP Site 865) of the Paleocene-Eocene thermal maximum (PETM). The d18O of crystallites (~1.2 per mil Pee Dee Belemnite (PDB)) is ~4.8 per mil higher than that of planktic foraminiferal calcite (-3.6 per mil PDB), while crystallite Mg/Ca and Sr/Ca ratios are slightly higher and substantially lower than in planktic foraminiferal calcite, respectively. The focused stratigraphic distribution of the crystallites signals an association with PETM conditions; hence, we attribute their formation to early diagenesis initially sourced by seafloor dissolution (burndown) ensued by reprecipitation at higher carbonate saturation. The Mg/Ca ratios of the crystallites are an order of magnitude lower than those predicted by inorganic precipitation experiments, which may reflect a degree of inheritance from "donor" phases of biogenic calcite that underwent solution in the sediment column. In addition, SIMS d18O and electron microprobe Mg/Ca analyses that were taken within a planktic foraminiferal shell yield parallel increases along traverses that coincide with muricae blades on the chamber wall. The parallel d18O and Mg/Ca increases indicate a diagenetic origin for the blades, but their d18O value (-0.5 per mil PDB) is lower than that of crystallites suggesting that these two phases of diagenetic carbonate formed at different times. Finally, we posit that elevated levels of early diagenesis acted in concert with sediment mixing and carbonate dissolution to attenuate the d18O decrease signaling PETM warming in "whole-shell" records published for Site 865.