243 resultados para ultra-fine grained titanium
Resumo:
Mineralogical and granulometric properties of glacial-marine surface sediments of the Weddell Sea and adjoining areas were studied in order to decipher spatial variations of provenance and transport paths of terrigenous detritus from Antarctic sources. The silt fraction shows marked spatial differences in quartz contents. In the sand fractions heavy-mineral assemblages display low mineralogical maturity and are dominated by garnet, green hornblende, and various types of clinopyroxene. Cluster analysis yields distinct heavy-mineral assemblages, which can be attributed to specific source rocks of the Antarctic hinterland. The configuration of modern mineralogical provinces in the near-shore regions reflects the geological variety of the adjacent hinterland. In the distal parts of the study area, sand-sized heavy minerals are good tracers of ice-rafting. Granulometric characteristics and the distribution of heavy-mineral provinces reflect maxima of relative and absolute accumulation of ice-rafted detritus in accordance with major iceberg drift tracks in the course of the Weddell Gyre. Fine-grained and coarse-grained sediment fractions may have different origins. In the central Weddell Sea, coarse ice-rafted detritus basically derives from East Antarctic sources, while the fine-fraction is discharged from weak permanent bottom currents and/or episodic turbidity currents and shows affinities to southern Weddell Sea sources. Winnowing of quartz-rich sediments through intense bottom water formation in the southern Weddell Sea provides muddy suspensions enriched in quartz. The influence of quartz-rich suspensions moving within the Weddell Gyre contour current can be traced as far as the continental slope in the northwestern Weddell Sea. In general, the focusing of mud by currents significantly exceeds the relative and absolute contribution of ice-rafted detritus beyond the shelves of the study area.
Resumo:
Sedimentological and geochemical (XRF) data together with information from diatom and benthic foraminiferal records of a 3.5 m long gravity core from Ameralik Fjord, southern West Greenland, is used for reconstructing late-Holocene environmental changes in this area. The changes are linked to large-scale North Atlantic ocean and climate variability. AMS 14C-dating of benthic foraminifera indicates that the sediment core records the last 4400 years and covers the termination of the Holocene Thermal Maximum (HTM). The late HTM (4.4 3.2 ka BP) is characterized by high accumulation rates of fine (silty) sediments related to strong meltwater discharge from the Inland Ice. The HTM benthic foraminiferal fauna demonstrates the presence of well-ventilated, saline bottom water originating from inflow of subsurface West Greenland Current water of Atlantic (Irminger Sea) origin. The hydrographic conditions were further characterized by limited sea ice probably related to a mild and relatively windy winter climate. After 3.2 ka BP lower fine-grained sedimentation rates, but a larger input from sea-ice rafted or aeolian coarse material prevailed. This can be related to colder atmospheric conditions with a decreased meltwater discharge and more widespread sea-ice cover in the fjord.
Resumo:
CHN analyses of sediments and rocks sampled during DSDP Leg 75 in the South Atlantic have provided concentrations of organic carbon and atomic C/N ratios of organic matter from two sites. High values of organic carbon were measured in sediments deposited during Neogene and Cretaceous times at Site 530 in the Angola Basin; sediments deposited at other times contain less than 0.5% organic carbon. Development of the Benguela Current and associated upwelling-supported biological productivity is recorded in late Miocene to Holocene sediments which contain 1 to 7% organic carbon. These sediments include debris flows and turbidites composed of predominantly biogenic materials originally deposited on the Walvis Ridge and on the African continental margin. Organic-carbon-rich black shales containing up to 17% organic carbon occur in late Albian to Coniacian turbidite sequences. These Cretaceous black shale layers are commonly several centimeters thick and are separated by bioturbated fine-grained organic-carbon-poor turbidites which are usually much thicker. At Site 532 on the Walvis Ridge, biogenic sediments deposited between late Miocene and Holocene times contain 1 to 9% organic carbon. Fluctuations in the intensity of high biological productivity associated with the Benguela Current are preserved in alternating light and dark layers of sediments. C/N ratios of organic matter in sediments from both sites are typical of marine sources
Resumo:
Vertical carbon fluxes between the surface and 2500 m depth were estimated from in situ profiles of particle size distributions and abundances me/asured off Cape Blanc (Mauritania) related to deep ocean sediment traps. Vertical mass fluxes off Cape Blanc were significantly higher than recent global estimates in the open ocean. The aggregates off Cape Blanc contained high amounts of ballast material due to the presence of coccoliths and fine-grained dust from the Sahara desert, leading to a dominance of small and fast-settling aggregates. The largest changes in vertical fluxes were observed in the surface waters (<250 m), and, thus, showing this site to be the most important zone for aggregate formation and degradation. The degradation length scale (L), i.e. the fractional degradation of aggregates per meter settled, was estimated from vertical fluxes derived from the particle size distribution through the water column. This was compared with fractional remineralization rate of aggregates per meter settled derived from direct ship-board measurements of sinking velocity and small-scale O2 fluxes to aggregates measured by micro-sensors. Microbial respiration by attached bacteria alone could not explain the degradation of organic matter in the upper ocean. Instead, flux feeding from zooplankton organisms was indicated as the dominant degradation process of aggregated carbon in the surface ocean. Below the surface ocean, microbes became more important for the degradation as zooplankton was rare at these depths.
Resumo:
Seventy-one samples from Ocean Drilling Program Leg 180 sites were analyzed for vitrinite reflectance and organic type. The objective was to define maximum paleotemperatures across the western Woodlark Basin as a function of depth. The organic matter is of early Pliocene to Holocene age and was recovered from drilled depths of 4.5 to 851.3 meters below seafloor. Organic matter is generally restricted to woody fragments within the sediment, although in a number of fine-grained samples, organic matter is dispersed throughout the sample. Virtually all samples contain vitrinite, part of which may be derived from drifted logs. One sample was found to be barren of organic matter, and two contain only fusinite and semifusinite. Variation of vitrinite reflectance is not systematic with either depth or location, and it appears that formation temperatures have been insufficient to cause an increase in vitrinite reflectance levels. Textural variations within the vitrinite show better correlation with depth. Samples of hypautochthonous peats represent either a terrestrial phase of sedimentation or large peat intraclasts within the section, possibly produced by forest fires in the source areas of the organic matter. The vitrinite and peat-derived samples appear to come from eucalyptus forest settings away from the coastline. Liptinite is not abundant in most of the samples (excluding suberinite associated with woody tissues). Marine liptinite is rare to absent, although many of the samples contain abundant foraminiferal tests. Pyrite is abundant in many of the wood fragments, and some pyritization of woody tissues has taken place.
Resumo:
Two hydraulic piston cores containing the total Quaternary suite were analyzed quantitatively in their planktonic foraminiferal contents. For the Early Pleistocene, the Caribbean standard zonation (BOLLI & PREMOLI-SILVA) can be adopted and refined by the introduction of an additional subzone at its base (the Globorotalia triangula subzone). Local substages are proposed for the Late Pleistocene because index fossils are missing. The use of the transfer-function technique resulted in paleotemperature and paleosalinity curves with a time resolution of cycles of about 4-68,000 years duration. The Early Pleistocene paleoenvironment is characterized by low oscillations of the surface water temperatures, followed by a distinct cooling trend during the Globorotalia viola subzone, a period of smoothed cycles during the Globorotalia hessi subzone and distinctly developed cycles during the late Pleistocene since the oxygen isotope termination III. Grainsize distribution and several dissolution indices gave evidence for current activities on the top of the Walvis Ridge, where the amount of fine grained components in the sediment is reduced in comparison with that of the flanks.
Resumo:
The upper Albian to Coniacian section (Cores 105 to 89) at Site 530 contains rare and poorly preserved coccoliths at a few levels and fine-fraction carbonate ("micarb") at all the levels studied. Dissolution ranking of the most resistant coccolith species is possible. Changes in the dissolution intensity resulting from variations in the organic carbon and carbonate input seem a likely explanation for changes in the relative abundance of fine-fraction carbonates types.
Resumo:
Fine-grained clay subfractions (SFs) with particle size of <0.1, 0.1-0.2, 0.2-0.3, 0.3-0.6, 0.6-2.0, and 2-5 µm separated from claystone of Upper Precambrian Pumanskaya and Poropelonskaya formations on the Srednii Peninsula were studied by transmission electron microscopy, X-ray diffraction, and Rb-Sr methods. All subfractions consist of low-temperature illite and chlorite, and contribution of chlorite decreases with diminishing particle size. The crystallinity index and I002/I001 ratio increase from coarse- to fine-grained SFs. Leaching by ammonium acetate solution and Rb-Sr systematics in combination with mineralogical and morphological data indicate that illite in Upper Proterozoic claystone from the Srednii Peninsula formed during three time intervals: 810-830, 610-620, and about 570 Ma ago. The first generation of this mineral with low Rb/Sr ratio dominates in coarse-grained SFs while the second and third generations with a high Rb/Sr ratio prevail in fine-grained SFs. All of three generations are known in Poropelon claystone, whereas Puman claystone contains only illite of the first and second generations. Geological processes responsible for multistage illite evolution in claystones are discussed.
Resumo:
Cores from the Atlantic Ibero-Moroccan continental rise and slope contain fine-grained Late Pleistocene and Holocene sediments. These young sediments cover the continental margin in large lensformed litho- and biostratigraphically well-defined units. The total sedimentation rates range from 4 cm/ 1000 yrs. to 27 cm/1000 yrs. off Portugal and from 6 cm/1000 yrs. to 14 cm/1000 yrs. off Morocco. Only a small proportion of these sediments usually consists of sand-sized particles (>0.063 mm) which are mostly dominated by foraminifera. Both planktonic and benthic foraminifera are much more abundant in Late Pleistocene and Holocene samples from the upper slope in comparison to those from the deeper slope and from the abyssal plains. Total sedimentation rates during cool and warm climatic stages are rather similar for both groups of foraminifera. For example, in Late Holocene sediments 7 x 10**3 benthic and 201 x 10**3 planktonic foraminifera (fraction 0.63 -0.20 mm) per 100 cm**2 and 1000 yrs. are preserved in the Tagus, 10-19 X 10**3 benthic and about 1.3 X 10**6 planktonic foraminifera are preserved in the Seine abyssal plain sediments. Values from the upper slope sediments are higher for benthic foraminifera by a factor of 60 off Portugal and 60 to 70 off Morocco. The values for planktonic ones differ by factors of 6-12 and 6 respectively. These numbers seem to reflect differences in production and preservation. Production rates of planktonic foraminifera generally seem to be somewhat higher during Holocene than during Late Pleistocene, and the rates of benthic foraminifera appear rather higher during Late Pleistocene than during Holocene.
Resumo:
Downhole bulk-sample and clay-mineral analytical results for Sites 558 and 563 are presented in this chapter. These results show a Tertiary climatic and hydrologic evolution similar to that at other DSDP drill sites in the northeastern Atlantic Ocean (Sites 398, 403-406, 548-550, 552-555). The sediments recovered at both sites are primarily calcareous and chalky oozes characterized by >90% carbonate and minor quartz and plagioclase feldspar. Clay minerals smectite, kaolinite, illite, and chlorite are present throughout the cores; upsection, illite increases at the expense of smectite. The clay mineralogy suggests climatic cooling and increased ocean circulation during the Miocene. Intervals rich in very fine grained (<2 µm) quartz suggest times of increased eolian input. This could have resulted from development, during Oligocene and late Miocene time, of an arid, desertlike sediment provenance that lasted until the present day.
Resumo:
The study of textural, structural, chemical, and physical properties of fine-grained recent marine sediments leads to the conclusion that only a few compositional factors are responsible for significant changes in mass physical characteristics in the upper meters below sea bottom. Fossil-induced porosity increases water content and liquid limit. It also seems to have partially influenced the plastic limit and plasticity index of calcareous sandy silts from the Red Sea and the western Gulf of Aden so that they become similar to the montmorillonite rich prodelta clays from the Nile Delta. Diagrams based on liquid limit and plasticity loose their original meaning in these cases. Activity of sediments rich in microorganisms can be higher than that of montmorillonitic clay. The shear strength-depth relationship of normally consolidated sediments is surprisingly little influenced by changes in sand or clay content and clay mineralogy. Only high lime content, submarine erosion and beginning cementation increase the strength considerably. Erosional disconformities near the present surface can be deduced from the strength-depth curve when as little as 1 or 2 m sediment have been removed. Flat or irregular strength-depth curves indicate beginning cementation and probably discontinuous sedimentation, provided the composition of the material remains in some degree constant. In our samples diagenetic pyrite, but no recristallisation of carbonates could be detected under the microscope. Underconsolidation and excess pore-water pressure, factors which tend to foster submarine slides, mud lumps, and diapiric folding, seem to be restricted Varito areas with mainly rapidly deposited, homogeneous or layered sediments. But where an abundance of burrowing organisms increases the vertical permeability of the sediment, normal consolidation and stable deposits are to be expected, at least in the upper meters below the present surface. According to 14C-determinations on calcareous microorganisms the rate of deposition of the investigated sediments seems to range from 26 to 167 cm per 1000 years.
Resumo:
At mid- to high-latitude marine sites, ice-rafted debris (IRD) is commonly recognized as anomalously coarse-grained terrigenous material contained within a fine-grained hemipelagic or pelagic matrix (e.g., Conolly and Ewing, 1970; Ruddiman, 1977, doi:10.1130/0016-7606(1977)88<1813:LQDOIS>2.0.CO;2; Krissek, 1989, doi:10.2973/odp.proc.sr.104.114.1989; Jansen et al., 1990; Bond et al., doi:10.1038/360245a0, 1992; Krissek, 1995, doi:10.2973/odp.proc.sr.145.118.1995). The presence of such ice-rafted material is a valuable indicator of the presence of glacial ice at sea level on an adjacent continent, whereas the composition of the IRD can often be used to identify the location of the source area (e.g., Goldschmidt, 1995, doi:10.1016/0025-3227(95)00098-J). Because the amount of core recovered during Leg 163 was very limited, this shore-based, postcruise study focuses on materials recovered at a nearby site during Leg 152. In particular, this study examines sediments recovered at Site 919; these sediments were described as containing a significant ice-rafted component in the Leg 152 Initial Reports volume (Larsen, Saunders, Clift, et al., 1994, doi:10.2973/odp.proc.ir.152.1994). In this study, the sedimentary section from Site 919 has been examined with the goal of providing a detailed history of glaciations on Greenland and other landmasses adjacent to the Norwegian-Greenland Sea; this history ultimately will be calibrated using an oxygen isotope stratigraphy (Flower, 1998, doi:10.2973/odp.proc.sr.152.219.1998), although that calibration has not been completed at this time. Because ice-core studies of the Greenland Ice Sheet (GIS) have shown that the GIS changed dramatically, and in some cases extremely rapidly, during at least the last interglacial stage (GRIP Members, 1993, doi:10.1038/364203a0), a detailed IRD record from the Southeast Greenland margin should provide insight into the longer term behavior of this sensitive component of the Northern Hemisphere climate system.
Resumo:
Modal analysis of middle Miocene to Pleistocene volcaniclastic sands and sandstones recovered from Sites 1108, 1109, 1118, 1112, 1115, 1116, and 1114 within the Woodlark Basin during Leg 180 of the Ocean Drilling Program indicates a complex source history for sand-sized detritus deposited within the basin. Volcaniclastic detritus (i.e., feldspar, ferromagnesian minerals, and volcanic rock fragments) varies substantially throughout the Woodlark Basin. Miocene sandstones of the inferred Trobriand forearc succession contain mafic and subordinate silicic volcanic grains, probably derived from the contemporary Trobriand arc. During the late Miocene, the Trobriand outerarc/forearc (including Paleogene ophiolitic rocks) was subaerially exposed and eroded, yielding sandstones of dominantly mafic composition. Rift-related extension during the late Miocene-late Pliocene led to a transition from terrestrial to neritic and finally bathyal deposition. The sandstones deposited during this period are composed dominantly of silicic volcanic detritus, probably derived from the Amphlett Islands and surrounding areas where volcanic rocks of Pliocene-Pleistocene age occur. During this time terrigenous and metamorphic detritus derived from the Papua New Guinea mainland reached the single turbiditic Woodlark rift basin (or several subbasins) as fine-grained sediments. At Sites 1108, 1109, 1118, 1116, and 1114, serpentinite and metamorphic grains (schist and gneiss) appear as detritus in sandstones younger than ~3 Ma. This is thought to reflect a major pulse of rifting that resulted in the deepening of the Woodlark rift basin and the prevention of terrigenous and metamorphic detritus from reaching the northern rift margin (Site 1115). The Paleogene Papuan ophiolite belt and the Owen Stanley metamorphics were unroofed as the southern margin of the rift was exhumed (e.g., Moresby Seamount) and, in places, subaerially exposed (e.g., D'Entrecasteaux Islands and onshore Cape Vogel Basin), resulting in new and more proximal sources of metamorphic, igneous, and ophiolitic detritus. Continued emergence of the Moresby Seamount during the late Pliocene-early Pleistocene bounded by a major inclined fault scarp yielded talus deposits of similar composition to the above sandstones. Upper Pliocene-Pleistocene sandstones were deposited at bathyal depths by turbidity currents and as subordinate air-fall ash. Silicic glassy (high-K calc-alkaline) volcanic fragments, probably derived from volcanic centers located in Dawson and Moresby Straits, dominated these sandstones.
Resumo:
Magnetic field strength and magnetic susceptibility were logged with the geological high-resolution magnetic tool (GHMT) at three of the holes drilled during Ocean Drilling Program Leg 178 to the west of the Antarctic Peninsula. Polarity stratigraphies derived from the GHMT logs bear close resemblance to the polarities determined from core paleomagnetism at two of the holes and were used for magnetostratigraphic dating, especially in intervals where no core was recovered. Polarity is determined in the following way. First, the susceptibility log is used to determine the induced magnetization of the sediment. Then the background field, the field of the metal drill pipe, and the field anomaly of the sediment's induced magnetization are removed from the measured total field to leave the downhole anomaly of the sediment's remanent magnetization. The sign (positive or negative) of this anomaly gave a good polarity stratigraphy for Holes 1095B and 1096C, which are located in sediment drifts. A further step, correlation analysis, is based on the fact that in an interval of normal polarity sediment the remanent anomaly will correlate with the induced anomaly, whereas in reversed polarity sediment they will anticorrelate. The magnetite-rich, fine-grained sediments found in the two holes drilled into the sediment drift have a ratio of remanent to induced magnetization (the Koenigsberger ratio) of ~1. In contrast, the coarser-grained diamict sediments on the shelf have a Koenigsberger ratio of ~0.2, and extracting the remanent part of the downhole anomaly is much more difficult. By the comparison of core and log results, we can assess the viability of the GHMT polarities in detail, what proportion of the overprint in the cores is imparted by the coring process, and whether any paleointensity information is extractable from the GHMT logs.
Resumo:
The sandfraction of the sediment was analysed in five cores, taken from 65 m water depth in the central and eastern part of the Persian Gulf. The holocene marls are underlayn by aragonite muds, which are probably 10-11,000 years old. 1. The cores could be subdivided into coarse grained and fine grained layers. Sorting is demonstrated by the following criteria: With increasing median values of the sandfraction - the fine grained fraction decreases within each core; - the median of each biogenic component, benthonic as well as planktonic, increases; - the median of the relict sediment, which in core 1179 was carried upward into the marl by bioturbation, increases; - the percentages of pelecypods, gastropods, decapods and serpulid worms in the sandfraction increase, the percentages of foraminifera and ostracods decrease; - the ratios of pelecypods to foraminifera and of decapods to ostracods increase; - the ratios of benthonic molluscs to planktonic molluscs (pteropods) and of benthonic foraminifera to planktonic foraminifera increase (except in core 1056 and 1179); - the ratio of planktonic molluscs (pteropods) to planktonic foraminifera increases; - the globigerinas without orbulinas increase, the orbulinas decrease in core 1056. Different settling velocities of these biogenic particles help in better understanding the results : the settling velocities, hence the equivalent hydrodynamic diameters, of orbulinas are smaller than those of other globigerinas, those of planktonic foraminifera are smaller than those of planktonic molluscs, those of planktonic molluscs are smaller than those of benthonic molluscs, those of pelecypods are smaller than those of gastropods. Bioturbation could not entirely distroy this "grain-size-stratification". Sorting has been stronger in the coarse layers than in the finer ones. As a cause variations in the supply of terrigenous material at constant strength of tidal currents is suggested. When much terrigenous material is supplied (large contents of fine grained fraction) the sedimentation rates are high: the respective sediment surface is soon covered and removed from the influence of tidal currents. When, however, the supply of terrigenous material is small, more sandy material is taken away in all locations within the influence of terrigenous supply. Thus the biogenic particles in the sediment do not only reflect the organic production, but also the influence of currents. 2. There is no parameter present in all cores that is independently variable from grain size and can be used for stratigraphic correlation. The two cores from the Strait of Hormus were correlated by their sequences of coarse and fine grained layers. 3. The sedimentation rates of terrigenous material, of total planktonic and benthonic organisms and of molluscs, foraminifera, echinoids and ophiuroids are shown in table 1 (total sediment 6.3-75.5 cm/1000 yr, biogenic carbonate 1.9-3.6 cm/1000 yr). The sedimentation rates of benthonic organisms are nearly the same in the cores of the Strait of Hormus, whereas near the Central Swell they are smaller. In the upper parts of the two cores of the Strait of Hormus sedimentation rates are higher than in the deeper parts, where higher median values point to stronger reworking. 4. The sequence of coarse and fine grained intervals in the two cores of the Hormus Strait, attributed to variations in climate, as well as the increase of terrigenous supply from the deeper to the upper parts of the cores, agrees with the descriptions in the literature of the post Pleistocene climate as becoming more humid. The rise of sea level is sedimentologically not measurable in the marly sediments - except perhaps for the higher content of echinoids in the lower part of core 1056. These may be attributed to the influence of a migrating wave-base. 5. The late Pleistocene aragonite mud is very fine grained (> 50%< 2 p) and poor in fossils (0.5-1.8%) biogenic particles of total sediment. The sand fraction consists almost entirely of white clumps, c. 0.1 mm in diameter (1177), composed of aragonite needles and of detrital minerals with the same size (1201). The argonite mud was probably not formed in situ, because the water depth at time of formation was at most 35 m at least 12 m. The sorting of the sediment (predominance of the fine grained sand), the absence of larger biogenic components and of pellets, c. 0.2-0.5 mm in diameter, which are typical for Recent and Pleistocene locations of aragonite formation, as well as the sedimentological conditions near the sampling points, indicate rather a transport of aragonite mud from an area of formation in very shallow waters. Sorting as well as lenticular fabric in core 1201 point to sedimentation within the influence of currents. During alternating sedimentation - and reworking processes the aragonitic matrix was separated from the silt - and sand-sized minerals. The lenses grade into touches because of bioturbation. 6. In core 1056 D2 from Hormus Bay the percentages of organic carbon, total nitrogen and total carbonate were determined. With increasing amounts of smaller grain sizes the content of organic matter increases, whereas the amount of carbonate decreases. The amounts of organic carbon and of nitrogen decrease with increasing depth, probably due to early-diagenetic decomposition processes. Most of the total nitrogen is of organic origin, only about 10% may well be inorganically fixed as ammonium-nitrogen. In the upper part of the core the C/N-ratio increases with increasing depth. This may be connected with a stronger decomposition of nitrogen-containing organic compounds. The general decrease of the C/N-ratios in the lower part of the core may be explained by the relative increase of inorganically fixed ammonium-nitrogen with decreasing content of organic matter.