204 resultados para electricspray ionization mass spectrum


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Circulation of seawater through basaltic basement for several million years after crustal emplacement has been inferred from studies of surface heat flow, and may play a significant role in the exchange of elements between the oceanic crust and seawater. Without direct observation of the fluid chemistry, interpretations regarding the extent and timing of this exchange must be based on the integrated signal of alteration found in sampled basalts. Much interest has thus been expressed in obtaining and analyzing fluids directly from basaltic formations. It has been proposed that open oceanic boreholes can be used as oceanic groundwater wells to obtain fluids that are circulating within the formation. Water samples were collected from the open borehole in Hole 504B prior to drilling operations on Leg 137, with the original intention of collecting formation fluids from the surrounding basaltic rocks. Past results have yielded ambiguous conclusions as to the origin of the fluids recovered-specifically, whether or not the fluids were true formation fluids or merely the result of reaction of seawater in the borehole environment. The chemistry of eight borehole fluid samples collected during Leg 137 is discussed in this paper. Large changes in major, minor, and isotopic compositions relative to unaltered seawater were observed in the borehole fluids. Compositional changes increased with depth in the borehole. The samples exhibit the effect of simple mixing of seawater, throughout the borehole, with a single reacted fluid component. Analysis and interpretation of the results from Leg 137 in light of past results suggest that the chemical signals observed may originate predominantly from reaction with basaltic rubble residing at the bottom of the hole during the interim between drilling legs. Although this endeavor apparently did not recover formation waters, information on the nature of reaction between seawater and basalt at the prevalent temperatures in Hole 504B (>160°C) has been gained that can be related to reconstruction of the alteration history of the oceanic crust. Isotopic analyses allow calculation of element-specific water/rock mass ratios (Li and Sr) and are related to the extent of chemical exchange between the borehole fluids and basalt.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drilling a transect of holes across the Costa Rica forearc during ODP Leg 170 demonstrated the margin wedge to be of continental, non accretionary origin, which is intersected by permeable thrust faults. Pore waters from four drillholes, two of which penetrated the décollement zone and reached the underthrust lower plate sedimentary sequence of the Cocos Plate, were examined for boron contents and boron isotopic signatures. The combined results show dilution of the uppermost sedimentary cover of the forearc, with boron contents lower than half of the present-day seawater values. Pore fluid "refreshening" suggests that gas hydrate water has been mixed with the sediment interstitial water, without profoundly affecting the d11B values. Fault-related flux of a deeply generated fluid is inferred from high B concentration in the interval beneath the décollement, being released from the underthrust sequence with incipient burial. First-order fluid budget calculations over a cross-section across the Costa Rica forearc indicate that no significant fluid transfer from the lower to the upper plate is inferred from boron fluid profiles, at least within the frontal 40 km studied. Expulsed lower plate pore water, which is estimated to be 0.26-0.44 km3 per km trench, is conducted efficiently along and just beneath the décollement zone, indicating effective shear-enhanced compaction. In the upper plate forearc wedge, dewatering occurs as diffuse transport as well as channelled flow. A volume of approximately 2 km3 per km trench is expulsed due to compaction and, to a lesser extent, lateral shortening. Pore water chemistry is influenced by gas hydrate instability, so that it remains unknown whether deep processes like mineral dehydration or hydrocarbon formation may play a considerable role towards the hinterland.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the African Humid Period (AHP), much of the modern hyperarid Saharan desert was vegetated and covered with numerous lakes. In marine sediments off northwestern Africa, the AHP is represented by markedly reduced siliciclastic sediment flux between ~ 12.3 and 5.5 ka. Changes in the origin of this terrigenous sediment fraction can be constrained by sediment chemistry and radiogenic isotope tracers. At Ocean Drilling Program (ODP) Site 658, Hole C (20°44.95'N, 18°34.85'W, 2263 mbsl), the neodymium (Nd) isotope composition of terrigenous detritus shows little variability throughout the last 25 kyr, indicating that the contributing geological terranes have not changed appreciably since the last glacial period. In contrast, there were large and abrupt changes in strontium (Sr) isotope ratios and chemical compositions associated with the AHP, during which 87Sr/86Sr ratios were markedly less radiogenic, and sediments show higher chemical indices of alteration. We show that sediment geochemical changes during the AHP cannot be attributed to changes in the source terranes, physical sorting, or intensity of chemical weathering. The low 87Sr/86Sr and high Sr concentrations of AHP-age samples also conflict with the interpretation of increased fine-grained, fluvially derived sediments. We propose that the most significant compositional changes at ODP 658C are due to the addition of an aluminosilicate component that has a highly altered major element signature but is enriched in soluble elements like Sr and magnesium (Mg) compared to aluminum (Al) and has low 87Sr/86Sr relative to local terrigenous source areas. We interpret these characteristics to reflect authigenic sediment supply from extensive North African paleolake basins that were prevalent during the AHP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oceanic flood basalts are poorly understood, short-term expressions of highly increased heat flux and mass flow within the convecting mantle. The uniqueness of the Caribbean Large Igneous Province (CLIP, 92-74 Ma) with respect to other Cretaceous oceanic plateaus is its extensive sub-aerial exposures, providing an excellent basis to investigate the temporal and compositional relationships within a starting plume head. We present major element, trace element and initial Sr-Nd-Pb isotope composition of 40 extrusive rocks from the Caribbean Plateau, including onland sections in Costa Rica, Colombia and Curaçao as well as DSDP Sites in the Central Caribbean. Even though the lavas were erupted over an area of ~3*10**6 km**2, the majority have strikingly uniform incompatible element patterns (La/Yb=0.96+/-0.16, n=64 out of 79 samples, 2sigma) and initial Nd-Pb isotopic compositions (e.g. 143Nd/144Ndin=0.51291+/-3, epsilon-Nd i=7.3+/-0.6, 206Pb/204Pbin=18.86+/-0.12, n=54 out of 66, 2sigma). Lavas with endmember compositions have only been sampled at the DSDP Sites, Gorgona Island (Colombia) and the 65-60 Ma accreted Quepos and Osa igneous complexes (Costa Rica) of the subsequent hotspot track. Despite the relatively uniform composition of most lavas, linear correlations exist between isotope ratios and between isotope and highly incompatible trace element ratios. The Sr-Nd-Pb isotope and trace element signatures of the chemically enriched lavas are compatible with derivation from recycled oceanic crust, while the depleted lavas are derived from a highly residual source. This source could represent either oceanic lithospheric mantle left after ocean crust formation or gabbros with interlayered ultramafic cumulates of the lower oceanic crust. High 3He/4He in olivines of enriched picrites at Quepos are ~12 times higher than the atmospheric ratio suggesting that the enriched component may have once resided in the lower mantle. Evaluation of the Sm-Nd and U-Pb isotope systematics on isochron diagrams suggests that the age of separation of enriched and depleted components from the depleted MORB source mantle could have been <=500 Ma before CLIP formation and interpreted to reflect the recycling time of the CLIP source. Mantle plume heads may provide a mechanism for transporting large volumes of possibly young recycled oceanic lithosphere residing in the lower mantle back into the shallow MORB source mantle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The DSDP/ODP Hole 504B, drilled in the 5.9 Ma southern flank of the Costa Rica Rift, represents the deepest section through modern ocean floor basaltic basement. The hole penetrates a 570 m thick volcanic zone, a 210 m thick transition zone of volcanic rocks and dykes, and 1056 m of dykes. A representative selection of these basalt types has been investigated with respect to Nd and Pb isotopes. The epsilonNd of the basalts varies from 7.62 to 11.16. This range in the Nd-isotope composition represents about 67% of the total range reported for Pacific MORB. The Pb-isotope composition also shows significant variation, with 206Pb/204Pb varying from 17.90 to 18.82. The isotopic data show that a small volume of enriched mantle existed in the source. The large ranges in isotopic composition in a single drill hole demonstrate the importance of small-scale mantle heterogeneities in the petrogenesis of MORB. Fractional melting and extraction of small magma batches by channelled flow, and small, short-lived crustal magma reservoirs, with limited potential for mixing of the mantle derived magmas, are favored by these isotopic data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sediments recovered from a drift deposit lying along the Pacific margin of the Antarctic Peninsula, (ODP Leg 178, Site 1095) provide a physical record of the Antarctic Circumpolar Current since late Miocene time. Determination of the strength of the magnetic fabric, anisotropy of magnetic susceptibility, provides a proxy for current strength. Fabric strength declines throughout the record from high values in the late Miocene; a pronounced step occurs between 5.0 and 5.5 Ma, and values decrease more gradually since about 3.0 Ma. The mass accumulation rate of terrigenous sediment derived from the Antarctic Peninsula indicates stabilization of the Antarctic Peninsula Ice Cap prior to about 8.5 Ma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 50 km-long West Valley segment of the northern Juan de Fuca Ridge is a young, extension-dominated spreading centre, with volcanic activity concentrated in its southern half. A suite of basalts dredged from the West Valley floor, the adjacent Heck Seamount chain, and a small near-axis cone here named Southwest Seamount, includes a spectrum of geochemical compositions ranging from highly depleted normal (N-) MORB to enriched (E-) MORB. Heck Seamount lavas have chondrite-normalized La/Sm en -0.3, 87Sr/86Sr = 0.70235 - 0.70242, and 206Pb/204Pb = 18.22 - 18.44, requiring a source which is highly depleted in trace elements both at the time of melt generation and over geologic time. The E-MORB from Southwest Seamount have La/Sm en -1.8, 87Sr/86Sr = 0.70245 - 0.70260, and 206Pb/204Pb = 18.73 - 19.15, indicating a more enriched source. Basalts from the West Valley floor have chemical compositions intermediate between these two end-members. As a group, West Valley basalts from a two-component mixing array in element-element and element-isotope plots which is best explained by magma mixing. Evidence for crustal-level magma mixing in some basalts includes mineral-melt chemical and isotopic disequilibrium, but mixing of melts at depth (within the mantle) may also occur. The mantle beneath the northern Juan de Fuca Ridge is modelled as a plum-pudding, with "plums" of enriched, amphibole-bearing peridotite floating in a depleted matrix (DM). Low degrees of melting preferentially melt the "plums", initially removing only the amphibole component and producing alkaline to transitional E-MORB. Higher degrees of melting tap both the "plums" and the depleted matrix to yield N-MORB. The subtly different isotopic compositions of the E-MORBs compared to the N-MORBs require that any enriched component in the upper mantle was derived from a depleted source. If the enriched component crystallized from fluids with a DM source, the "plums" could evolve to their more evolved isotopic composition after a period of 1.5-2.0 Ga. Alternatively, the enriched component could have formed recently from fluids with a lessdepleted source than DM, such as subducted oceanic crust. A third possibility is that enriched material might be dispersed as "plums" throughout the upper mantle, transported from depth by mantle plumes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissolved organic matter (DOM) was extracted with solid phase extraction (SPE) from 137 water samples from different climate zones and different depths along an Eastern Atlantic Ocean transect. The extracts were analyzed with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) with electrospray ionization (ESI). D14C analyses were performed on subsamples of the SPE-DOM. In addition, the amount of dissolved organic carbon was determined for all water and SPE-DOM samples as well as the yield of amino sugars for selected samples. Linear correlations were observed between the magnitudes of 43% of the FT-ICR mass peaks and the extract D14C values. Decreasing SPE-DOM D14C values went along with a shift in the molecular composition to higher average masses (m/z) and lower hydrogen/carbon (H/C) ratios. The correlation was used to model the SPE-DOM D14C distribution for all 137 samples. Based on single mass peaks a degradation index was developed to compare the degradation state of marine SPE-DOM samples analyzed with FT-ICR MS. A correlation between D14C, degradation index, DOC values and amino sugar yield supports that SPE-DOM analyzed with FT-ICR MS reflects trends of bulk DOM. A relative mass peak magnitude ratio was used to compare aged SPE-DOM and fresh SPE-DOM regarding single mass peaks. The magnitude ratios show a continuum of different reactivities for the single compounds. Only few of the compounds present in the FT-ICR mass spectra are expected to be highly degraded in the oldest water masses of the Pacific Ocean. All other compounds should persist partly thermohaline circulation. Prokaryotic (bacterial) production, transformation and accumulation of this very stable DOM occurs probably primarily in the upper ocean. This DOM is an important contribution to very old DOM, showing that production and degradation are dynamic processes.