228 resultados para difference distri bution table
Resumo:
During the latest Cretaceous cooling phase, a positive shift in benthic foraminiferal d18O values lasting about 1.5 Myr (71.5-70 Ma) can be observed at a global scale (Campanian-Maastrichtian Boundary Event, CMBE). This d18O excursion is interpreted as being influenced by a change in intermediate- to deep-water circulation or by temporal build-up of Antarctic ice sheets. Here we test whether benthic foraminiferal assemblages from a southern high-latitudinal site near Antarctica (ODP Site 690) are influenced by the CMBE. If the d18O transition reflects a change in intermediate- to deep-water circulation from low-latitude to high-latitude water masses, then this change would result in cooler temperatures, higher oxygen concentration, and possibly lower organic-matter flux at the seafloor, resulting in a major benthic foraminiferal assemblage change. If, however, the d18O transition was mainly triggered by ice formation, no considerable compositional difference in benthic foraminiferal assemblages would be expected. Our data show a separation of the studied succession into two parts with distinctly different benthic foraminiferal assemblages. Species dominating the older part (73.0-70.5 Ma) tolerate less bottom water oxygenation and are typical components of low-latitude assemblages. In contrast, the younger part (70.0-68.0 Ma) is characterized by species that indicate well-oxygenated bottom waters and species common in high-latitude assemblages. We interpret the observed change in benthic foraminiferal assemblages toward a well-oxygenated environment to reflect the onset of a shift from low-latitude toward high-latitude dominated intermediate- to deep-water sources. This implies that a change in oceanic circulation was at least a major component of the CMBE.
Resumo:
Radiocarbon age relationships between co-occurring planktic foraminifera, alkenones, and total organic carbon in sediments from the continental margins of southern Chile, northwest Africa, and the South China Sea were compared with published results from the Namibian margin. Age relationships between the sediment components are site-specific and relatively constant over time. Similar to the Namibian slope, where alkenones have been reported to be 1000-4500 years older than co-occurring foraminifera, alkenones were significantly (~1000 years) older than co-occurring foraminifera in the Chilean margin sediments. In contrast, alkenones and foraminifera were of similar age (within 2 sigma error or better) in the NW African and South China Sea sediments. Total organic matter and alkenone ages were similar off Namibia (age difference TOC alkenones: 200-700 years), Chile (100-450 years), and NW Africa (360-770 years), suggesting minor contributions of preaged terrigenous material. In the South China Sea, total organic carbon is significantly (2000-3000 years) older owing to greater inputs of preaged terrigenous material. Age offsets between alkenones and planktic foraminifera are attributed to lateral advection of organic matter. Physical characteristics of the depositional setting, such as seafloor morphology, shelf width, and sediment composition, may control the age of co-occurring sediment components. In particular, offsets between alkenones and foraminifera appear to be greatest in deposition centers in morphologic depressions. Aging of organic matter is promoted by transport. Age offsets are correlated with organic richness, suggesting that formation of organic aggregates is a key process.
Resumo:
he oxygen minimum zone (OMZ) off Vancouver Island was more oxygen depleted relative to modern conditions during the Allerød (~13.5 to 12.6 calendar kyr) and again from ~11 to 10 kyr. The timing of OMZ intensification is similar to that seen throughout the North Pacific, although the onset appears to have been delayed by ~1500 years off Vancouver Island. Radiocarbon dating of coeval benthic and planktonic foraminifera shows that between 16.0 and 12.6 kyr the age contrast between surface and intermediate waters (920 m depth) off Vancouver Island was similar to, or slightly less than, that today. There is no evidence of an increased age difference (i.e., decreased ventilation) during the deglaciation, particularly during the Allerød. However, sedimentary marine organic carbon concentration and mass accumulation rate increased substantially in the Allerød, suggesting that increased organic matter export was the principal cause of late Pleistocene OMZ intensification off Vancouver Island.
Resumo:
In this study we present a sea surface temperature (SST) record from the western Arabian Sea for the last 20,000 years. We produced centennial-scale d18O and Mg/Ca SST time series of core NIOP929 with focus on the glacial-interglacial transition. The western Arabian Sea is influenced by the seasonal NE and SW monsoon wind systems. Lowest SSTs occur during the SW monsoon season because of upwelling of cold water, and highest SSTs can be found in the low-productivity intermonsoon season. The Mg/Ca-based temperature record reflects the integrated SST of the SW and NE monsoon seasons. The results show a glacial-interglacial SST difference of ~2°C, which is corroborated by findings from other Arabian Sea cores. At 19 ka B.P. a yet undescribed warm event of several hundred years duration is found, which is also reflected in the d18O record. A second centennial-scale high SST/low d18O event is observed at 17 ka B.P. This event forms the onset of the stepwise yet persistent trend toward Holocene temperatures. Highest Mg/Ca-derived SSTs in the NIOP929 record occurred between 13 and 10 ka B.P. Interglacial SST is ~24°C, indicating influence of upwelling. The onset of Arabian Sea warming occurs when the North Atlantic is experiencing minimum temperatures. The rapid temperature variations at 19, 17, and 13 ka B.P. are difficult to explain with monsoon changes alone and are most likely also linked to regional hydrographic changes, such as trade wind induced variations in warm water advection.
Resumo:
The planktonic diatom Fragilariopsis kerguelensis plays an important role in the biogeochemical cycles of the Southern Ocean, where remains of its frustules form the largest deposit of biogenic silica anywhere in the world. We assessed the genetic identity of 26 strains, from cells collected at various sites in the Southern Ocean, using three molecular markers, LSU and ITS rDNA and rbcL. The LSU sequences were identical among the tested strains, ITS sequences were highly similar, and only one base pair difference was detected among the rbcL sequences. These results, together with a large number of successful mating experiments demonstrated that the strains belong to a single biological species. We investigated the mating system and life cycle traits of F. kerguelensis. Cell size diminished gradually in clonal strains. Gamete formation only occurred when strains of opposite mating type - within a cell size range of 7-36 µm - were mixed together. Two binucleate gametes were formed in each gametangium and gamete conjugation produced a zygote that had four nuclei and was surrounded by thin siliceous scales. Two out of the four nuclei subsequently degenerated and the zygote expanded to form an auxospore surrounded by a transverse and a longitudinal perizonium. Staining with the fluorochrome PDMPO provided for the first time a clear demonstration that the longitudinal perizonium is formed after auxospore expansion is complete. Initial cells produced within the mature auxospores were 78-101 µm in length. Various authors have shown that the average valve size of F. kerguelensis varies in sediment samples collected in regions and seasons with different primary production regimes and this parameter has thus been proposed as a biological proxy for palaeo-productivity. A better understanding of the life cycle of F. kerguelensis should help the design of future investigations aimed at testing the link between cell size distribution in the natural environment and the role that environmental factors might have in the regulation of population cell size.
Resumo:
We use planktonic oxygen isotope (d18O) records spanning the last 30,000 years (kyr) to constrain the magnitude and spatial pattern of glacial cooling in the upwelling environment of the eastern equatorial Pacific (EEP). Fourteen new downcore d18O records were obtained from surface-dwelling planktonic foraminifera Globigerinoides sacculifer and Globigerinoides ruber in eight cores from the upwelling tongue of the EEP. All sites have sedimentation rates exceeding 5 cm/kyr and, with one exception, lie above the modern depth of the foraminiferal lysocline. Sites directly underlying the cool band of upwelling immediately south of the equator record mean late Holocene (LH)-Last Glacial Maximum (LGM) d18O amplitudes ranging between 1.0 and 1.3 per mil. We estimate that mean sea surface temperatures (SST) in this region during the LGM were on average 1.5 ± 0.5°C lower than the LH. Larger d18O amplitudes are observed in sites north of the equator, indicating a spatial pattern of reduced meridional SST gradient across the equator during the LGM. This result is supported by comparison of Mg/Ca SST reconstructions from two sites straddling the equator. We interpret the reduction of this gradient during the LGM as evidence for a less intense cold tongue-Intertropical Convergence Zone (ITCZ) frontal system, a more southerly position of the ITCZ, and weaker southeast equatorial trades in the EEP.
Resumo:
One of the objectives of drilling at Site 1179 was to search for microbes or biochemical evidence of microbial activity as part of the ongoing exploration of the depth and extent of the deep biosphere. The existence of living microbes has not been confirmed, but the chemistry of pore waters from the site, such as sulfate and ammonium profiles, is consistent with sulfate reduction and nitrification by anaerobic bacteria. However, chemical profiles are affected by the movement of molecules and ions through porous sediments by diffusion and advection. Permeability is thus an important consideration in the interpretation of pore water chemistry profiles. Moreover, diatomaceous sediments have some unique and, as yet, poorly understood physical properties. The purpose of this research is to measure hydraulic conductivity (permeability) in a suite of sediment samples from Ocean Drilling Program Site 1179 by the transient-pulse method. The sample set consists of four diatom ooze samples from Unit I, one radiolarian ooze sample from Unit II, and one pelagic clay sample from Unit III. The permeability of the clay is 1.92 µd, whereas the permeabilities of the overlying radiolarian and diatom oozes range from 289 to 1604 µd. Among these samples, permeability increases with porosity and grain size, in keeping with the results of previous studies.
Resumo:
Two main alternating facies were observed at Ocean Drilling Program (ODP) Site 1165, drilled in 3357 m water depth into the Wild Drift (Cooperation Sea, Antarctica): a dark gray, laminated, terrigenous one (interpreted as muddy contourites) and a greenish, homogeneous, biogenic and coarse fraction-bearing one (interpreted as hemipelagic deposits with ice rafted debris [IRD]). These two cyclically alternating facies reflect orbitally driven changes (Milankovitch periodicities) recorded in spectral reflectance, bulk density, and magnetic susceptibility data and opal content changes. Superimposed on these short-term variations, significant uphole changes in average sedimentation rates, total clay content, IRD amount, and mineral composition were interpreted to represent the long-term lower to upper Miocene transition from a temperate climate to a cold-climate glaciation. The analysis of the short-term variations (interpreted to reflect ice sheet expansions controlled by 41-k.y. insolation changes) requires a quite closely spaced sampled record like that provided by the archive multisensor track. Among those, cycles are best described by spectral reflectance data and, in particular, by a parameter calculated as the ratio of the reflectivity in the green color band and the average reflectivity (gray). In this data report a numerical evaluation of spectral reflectance data was performed and substantiated by correlation with core photos to provide an objective description of the color variations within Site 1165 sediments. The resulting color description provides a reference to categorize the available samples in terms of facies and, hence, a framework for further analyses. Moreover, a link between visually described features and numerical series suitable for spectral analyses is provided.
Resumo:
Significant uncertainties persist in the reconstruction of past sea surface temperatures in the eastern equatorial Pacific, especially regarding the amplitude of the glacial cooling and the details of the post-glacial warming. Here we present the first regional calibration of alkenone unsaturation in surface sediments versus mean annual sea surface temperatures (maSST). Based on 81 new and 48 previously published data points, it is shown that open ocean samples conform to established global regressions of Uk'37 versus maSST and that there is no systematic bias from seasonality in the production or export of alkenones, or from surface ocean nutrient concentrations or salinity. The flattening of the regression at the highest maSSTs is found to be statistically insignificant. For the near-coastal Peru upwelling zone between 11-15°S and 76-79°W, however, we corroborate earlier observations that Uk'37 SST estimates significantly over-estimate maSSTs at many sites. We posit that this is caused either by uncertainties in the determination of maSSTs in this highly dynamic environment, or by biasing of the alkenone paleothermometer toward El Niño events as postulated by Rein et al. (2005).
Resumo:
The first full water column hafnium isotopic compositions of Atlantic seawater have been obtained at seven locations from the Labrador Sea to the Drake Passage. Despite subpicomolar concentrations in seawater, a precision of the Hf isotopic measurements of <0.7 epsilon-Hf units was achieved. An overall epsilon-Hf range between -3.1 in the Labrador Sea and +4.4 in Antarctic bottom water was determined, the distribution of which broadly reflects continental weathering inputs. Within particular water column profiles, significant differences of up to 4 epsilon-Hf units occur. Combined with Nd isotope data of the same samples, it is evident that the Hf isotopic composition of seawater is too radiogenic for a given Nd isotopic composition and that the largest difference between expected and measured Hf isotopic compositions in seawater occurs near the oldest continental crust in the Labrador Sea. This corroborates the previous proposition, which was mainly based on ferromanganese crust data, that the Hf isotopic composition of seawater is controlled by incongruent weathering of continental crust and possibly, to some extent, by hydrothermal contributions. Hafnium concentrations in the ocean do not increase along the deep ocean conveyer indicating an oceanic residence time of only a few hundred years, which is significantly shorter than previously assumed. The Hf isotopic composition of past seawater can therefore serve as a proxy for short distance, basin scale mixing processes and the regime and intensity of nearby continental weathering processes.
Resumo:
The chemical structure of refractory marine dissolved organic matter (DOM) is still largely unknown. Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS) was used to resolve the complex mixtures of DOM and provide valuable information on elemental compositions on a molecular scale. We characterized and compared DOM from two sharply contrasting aquatic environments, algal-derived DOM from the Weddell Sea (Antarctica) and terrigenous DOM from pore water of a tropical mangrove area in northern Brazil. Several thousand molecular formulas in the mass range of 300-600 Da were identified and reproduced in element ratio plots. On the basis of molecular elemental composition and double-bond equivalents (DBE) we calculated an average composition for marine DOM. O/C ratios in the marine samples were lower (0.36 ± 0.01) than in the mangrove pore-water sample (0.42). A small proportion of chemical formulas with higher molecular mass in the marine samples were characterized by very low O/C and H/C ratios probably reflecting amphiphilic properties. The average number of unsaturations in the marine samples was surprisingly high (DBE = 9.9; mangrove pore water: DBE = 9.4) most likely due to a significant contribution of carbonyl carbon. There was no significant difference in elemental composition between surface and deep-water DOM in the Weddell Sea. Although there were some molecules with unique marine elemental composition, there was a conspicuous degree of similarity between the terrigenous and algal-derived end members. Approximately one third of the molecular formulas were present in all marine as well as in the mangrove samples. We infer that different forms of microbial degradation ultimately lead to similar structural features that are intrinsically refractory, independent of the source of the organic matter and the environmental conditions where degradation took place.