829 resultados para ULTRAPOTASSIC ROCKS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An upper Aptian to middle Albian series of volcaniclastic rocks more than 300 m thick was drilled at Site 585 in the East Mariana Basin. On the basis of textural and compositional (bulk-rock chemistry, primary and secondary mineral phases) evidence, the volcaniclastic unit is subdivided into a lower (below 830 m sub-bottom) and an upper (about 670-760 m) sequence; the boundary in the interval between is uncertain owing to lack of samples. The rocks are dominantly former vitric basaltic tuffs and minor lapillistones with lesser amounts of crystals and basaltic lithic clasts. They are mixed with shallow-water carbonate debris (ooids, skeletal debris), and were transported by mass flows to their site of deposition. The lower sequence is mostly plagioclase- and olivine-phyric with lesser amounts of Ti-poor clinopyroxene. Mineralogical and bulk-rock chemical data indicate a tholeiitic composition slightly more enriched than N-MORB (normal mid-ocean ridge basalt). Transport was by debris flows from shallow-water sites, as indicated by admixed ooids. Volcanogenic particles are chiefly moderately vesicular to nonvesicular blocky shards (former sideromelane) and less angular tachylite with quench plagioclase and pyroxene, indicating generation of volcanic clasts predominantly by spalling and breakage of submarine pillow and/or sheet-flow lavas. The upper sequence is mainly clinopyroxene- and olivine-phyric with minor plagioclase. The more Ti-rich clinopyroxene and the bulk-rock analyses show that the moderately alkali basaltic composition throughout is more mafic than the basal tholeiitic sequence. Transport was by turbidity currents. Rounded epiclasts of crystalline basalts are more common than in the lower sequence, and, together with the occurrence of oxidized olivine pseudomorphs and vesicular tachylite, are taken as evidence of derivation from eroded subaerially exposed volcanics. Former sideromelane shards are more vesicular than in the lower sequence; vesicularity exceeds 60 vol.% in some clasts. The dominant clastic process is interpreted to be by shallow-water explosive eruptions. All rocks have undergone low-temperature alteration; the dominant secondary phases are "palagonite," chlorite/smectite mixed minerals, analcite, and chabazite. Smectite, chlorite, and natrolite occur in minor amounts. Phillipsite is recognized as an early alteration product, now replaced by other zeolites. During alteration, the rocks have lost up to 50% of their Ca, compared with a fresh shard and fresh glass inclusions in primary minerals, but have gained much less K, Rb, and Ba than expected, indicating rapid deposition prior to significant seafloor weathering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report presents short-wave infrared spectroscopic data acquired from both core and powdered samples collected during Ocean Drilling Program Leg 193, from Holes 1188A, 1188F, and 1189A, using a Portable Infrared Mineral Analyzer reflectance spectrometer. The distribution of alteration minerals detected using this method for each site is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Primary magmatic phases (spinel, olivine, plagioclase, clinopyroxene, amphibole, and biotite) and secondary phyllosilicates (smectite, chlorite-smectite, and celadonite) were analyzed by electron microprobe in alkalic and tholeiitic dolerites and basalts from Ocean Drilling Program Sites 800, 801, and 802. Aphyric alkalic dolerite sills (Hole 800A) and basalt flows (Holes 801B and 801C) share common mineralogical features: matrix feldspars are strongly zoned from labradorite cores to discrete sodic rims of alkali feldspar with a high Or component, which overlaps that of quench microlites in glassy mesostasis; little fractionated clinopyroxenes are Ti-rich diopsides and augites (with marked aegirine-augite rims at Site 801); rare, brown, Fe**3+-rich amphibole is winchite; and late biotites exhibit variable Ti contents. Alkalic rims to feldspars probably developed at the same time as quenched mesostasis feldspars and late-stage magmatic biotite, and represent the buildup of K-rich hydrous fluids during crystallization. Phenocryst phases in primitive mid-ocean ridge tholeiites from Hole 801C (Mg numbers about 70) have extreme compositions with chrome spinel (Cr/Cr + Al ratios about 0.2-0.4), Ni-rich olivine (Fo90), and highly calcic plagioclase (An90). Later glomerophyric clumps of plagioclase (An75-80) and clinopyroxene (diopside-augite) are strongly zoned and probably reflect rapidly changing melt conditions during upward transport, prior to seafloor quenching. In contrast, phenocryst phases (olivine, plagioclase, and clinopyroxene) in the Hole 802A tholeiites show limited variation and do not have such primitive compositions, reflecting the uniform and different chemical composition of all the bulk rocks. Replacive phyllosilicates in both alkalic and tholeiitic basalts include various colored smectites (Fe-, Mg-, and Al-saponites), chlorite-smectite and celadonite. Smectite compositions typically reflect the replaced host composition; glass is replaced by brown Fe-saponites (variable Fe/Mg ratios) and olivine by greenish Mg-saponites (or Al-rich chlorite-smectite).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the antarctic summer season in 1984 and 1986 field studies and laboratory investigations of the Mesozoic Intrusive Suite of the Palmer Archipel were carried out in cooperation with the Chilean Antarctic Institute and the University of Concepcion, Volcanic formations and intrusive series are the dominant exposed rocks together with very subordinate metasediments. Different petrological and isotopic data allow to divide the Antarctic Intrusive Suite into two intrusive types: a) Palmer Batholith (Lower Cenozoic) b) Costa Danco intrusive rocks (Upper Cretaceous). Both types belong to a calc-alkaline series. The granitoid rocks show an I-type-affinity. Ore minerals (pyrite, chalcopyrite, bornite, covellite, cuprite, pyrrhotite, magnetite and ilmenite) are mainly restricted to the intermediate rock types (e. g. granodiorites}. Propylitisation and kaolinisation are the observed alteration types, which suggest, together with the disseminated and vein-like ore fabrics the comparison with the andean Porphyry-Copper- and vein-type-deposits. The volcanic formations are subdivided into a) the Upper Cretaceous Wiencke Formation, which is composed of andesites and andesitic breccias, and b) into the Jurassic Lautaro Formation with basaltic, andesitic, dacitic and some rhyolitic rocks together with volcanic breccias. These calc-alkaline volcanic rocks apparently are part of an island are. A strong alteration of primary minerals is very common; however, the low ore mineral content does not change significantly within the different alteration types.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An isotope-geochemical study of Eocene-Oligocene magmatic rocks from the Western Kamchatka-Koryak volcanogenic belt revealed lateral heterogeneity of mantle magma sources in its segments: Western Kamchatka, Central Koryak, and Northern Koryak ones. In the Western Kamchatka segment magmatic melts were generated from isotopically heterogeneous (depleted and/or insignificantly enriched) mantle sources significantly contaminated by quartz-feldspathic sialic sediments; higher 87Sr/86Sr (0.70429-0.70564) and lower 143Nd/144Nd [eNd(T) = 0.06-2.9] ratios in volcanic rocks from the Central Koryak segment presumably reflect contribution of an enriched mantle source; high positive eNd(T) and low 87Sr/86Sr ratios in magmatic rocks from the Northern Koryak segment area indicate their derivation from an isotopically depleted mantle source without significant contamination by sialic or mantle material enriched in radiogenic Sr and Nd. Significantly different contamination histories of Eocene-Oligocene mantle magmas in Kamchatka and Koryakia are related to their different thermal regimes: higher heat flow beneath Kamchatka led to crustal melting and contamination of mantle suprasubduction magmas by crustal melts. Cessation of suprasubduction volcanism in the Western Kamchatka segment of the continental margin belt was possibly related to accretion of the Achaivayam-Valagin terrane 40 Ma ago, whereas suprasubduction activity in the Koryak segment stopped due to closure of the Ukelayat basin in Oligocene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chemical composition of glass inclusions in phenocrystic plagioclase and pyroxene from Sites 792 and 793, drilled during Ocean Drilling Program Leg 126 in the Bonin Arc, is examined. Immiscible liquid, which is preserved as glass inclusions with unmixed textures in plagioclase, is observed in a high-magnesian andesite, which suggests an important role of liquid immiscibility in the fractionation of high-magnesian andesite. In other andesitic rocks (SiO2 = 57-60 wt%), such unmixed textures of glass inclusions in calcic plagioclase with a similar percentage of An (around 80%) is not found. The degree of fractionation and mixing of liquid are inferred from the glass composition in pyroxene.